Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays

Zarowna-Dabrowska, Alicja and Neale, S.L. and Massoubre, David and Mckendry, Jonathan and Rae, B. and Henderson, R.K. and Rose, M.J. and Yin, H and Cooper, J.M. and Gu, Erdan and Dawson, Martin (2011) Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays. Optics Express, 19 (3). 2720–2728. ISSN 1094-4087

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A novel, miniaturized optoelectronic tweezers (OET) system has been developed using a CMOS-controlled GaN micro-pixelated light emitting diode (LED) array as an integrated micro-light source. The micro-LED array offers spatio-temporal and intensity control of the emission pattern, enabling the creation of reconfigurable virtual electrodes to achieve OET. In order to analyse the mechanism responsible for particle manipulation in this OET system, the average particle velocity, electrical field and forces applied to the particles were characterized and simulated. The capability of this miniaturized OET system for manipulating and trapping multiple particles including polystyrene beads and live cells has been successfully demonstrated.