Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Dynamic modeling of tubular SOFC for marine power system

San, Bao-gang and Zhou, Peilin and Clelland, David (2010) Dynamic modeling of tubular SOFC for marine power system. Journal of Marine Science and Application, 9 (3). pp. 231-240.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Solid oxide fuel cell (SOFC) has been identified as an effective and clean alternative choice for marine power system. This paper emphasizes on the dynamic modeling of SOFC power system and its performance based upon marine operating circumstance. A SOFC power system model has been provided considering thermodynamic and electrochemical reaction mechanism. Subcomponents of lithium ion battery, power conditioning unit, stack structure and controller are integrated in the model. The dynamic response of the system is identified according to the inertia of its subcomponent and controller. Validation of the whole system simulation at steady state and transit period are presented, concerning the effects of thermo inertia, control strategy and seagoing environment. The simulation results show reasonable accuracy compare with lab test. The models can be used to predict performance of a SOFC power system and identify the system response when part of the component parameter is adjusted.