Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

An investigation into machine pattern recognition based on time-frequency image feature extraction using a support vector machine

Li, Hongkun and Zhou, Peilin and Zhang, Zhixin (2010) An investigation into machine pattern recognition based on time-frequency image feature extraction using a support vector machine. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224 (4). pp. 981-994. ISSN 0954-4062

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this article, a new method of pattern recognition for machine working conditions is presented that is based on time-frequency image (TFI) feature extraction and support vector machines (SVMs). In this study, the Hilbert time-frequency spectrum (HTFS) is used to construct TFIs because of its good performance in non-stationary and non-linear signal analysis. Cyclostationarity signal analysis is a pre-processing method for improving the performance of the HTFS in the construction of TFIs. Feature extraction for TFIs is investigated in detail to construct a feature vector for pattern recognition. Gravity centre and information entropy of TFIs are used to construct the feature vector for pattern recognition. SVMs are used for different working conditions classification by the constructed feature vector because of its powerful performance even for small samples. In the end, rolling bearing pattern recognition is used as an example to testify the effectiveness of this method. According to the result analysis, it can be concluded that this method will contribute to the development of preventative maintenance.