Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Quantum modeling of semiconductor gain materials and vertical-external-cavity surface-emitting laser systems

Bueckers, Christina and Kuehn, Eckhard and Schlichenmaier, Christoph and Imhof, Sebastian and Thraenhardt, Angela and Hader, Joerg and Moloney, Jerome V. and Rubel, Oleg and Zhang, Wei and Ackemann, Thorsten and Koch, Stephan W. (2010) Quantum modeling of semiconductor gain materials and vertical-external-cavity surface-emitting laser systems. Physica Status Solidi B, 247 (4). pp. 789-808. ISSN 0370-1972

[img]
Preview
PDF
manuscript_final.pdf - Submitted Version

Download (746kB) | Preview

Abstract

This article gives an,overview of the microscopic theory,theory used to quantitatively model a wide range of semiconductor laser gain materials. As a snapshot of the current state of research, applications to a variety of actual quantum-well systems are presented. Detailed theory experiment comparisons are shown and it is analyze how the theory can be used to extract poorly known material parameters. The intrinsic laser loss processes due to radiative and nonradiative Auger recombination are evaluated microscopically. The results are used for realistic simulations of vertical-external-cavity surface-emitting laser systems. To account for nonequilibrium effects, a simplified model is presented using pre-computed microscopic scattering and dephasing rates. Prominent deviations from quasi-equilibrium carrier distributions are obtained under strong in-well pumping conditions.