Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Stability of lobed balloons

Pagitz, M and Xu, Yixiang and Pellegrino, S. (2006) Stability of lobed balloons. Advances in Space Research, 37 (11). pp. 2059-2069. ISSN 0273-1177

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper presents a computational study of the stability of simple lobed balloon structures. Two approaches are presented, one based on a wrinkled material model and one based on a variable Poissons ratio model that eliminates compressive stresses iteratively. The first approach is used to investigate the stability of both a single isotensoid and a stack of four isotensoids, for perturbations of infinitesimally small amplitude. It is found that both structures are stable for global deformation modes, but unstable for local modes at sufficiently large pressure. Both structures are stable at any pressure if an isotropic model is assumed. The second approach is used to investigate the stability of the isotensoid stack for large shape perturbations, taking into account contact between different surfaces. For this structure a distorted, stable configuration is found. It is also found that the volume enclosed by this configuration is smaller than that enclosed by the undistorted structure.