Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Computing the value of security

Kirschen, D. and Bell, K.R.W. and Nedic, D. and Jayaweera, D.S. and Allan, R. (2003) Computing the value of security. IEE Proceedings Generation Transmission and Distribution, 150 (6). pp. 673-678. ISSN 1350-2360

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Power systems are operated with some margin of security to ensure that the most likely losses of plant will not cause interruptions to supply. However, this security margin has a cost that may not be justified by the benefit in terms of prevention of lost load. The authors argue that the level of security could be set on the basis of a cost/benefit analysis that balances the cost of operating the system against the expected outage cost. The expected outage cost is determined using a Monte Carlo simulation of the system operation in which random outages are simulated. Such a simulation should not be limited to small but relatively frequent outages but should also include major disturbances that affect a large part of the system. In order to achieve a sufficient degree of accuracy, the simulation models the actions taken to save the system during emergencies, the duration of the restoration process, and possible protection malfunctions. It is shown that sympathetic trippings due to protection malfunction can have a very significant impact on the probability of major incidents and hence on the value of security.