Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Development of a buccal bioadhesive nicotine tablet formulation for smoking cessation

Ikinci, Gulcan and Senel, Sevda and Wilson, Clive and Sumnu, Murat (2004) Development of a buccal bioadhesive nicotine tablet formulation for smoking cessation. International Journal of Pharmaceutics, 277 (1-2). pp. 173-178. ISSN 0378-5173

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Bioadhesive buccal tablet formulations for delivery of nicotine into the oral cavity were developed. Carbomer (Carbopol®974P NF) (CP) and alginic acid sodium salt (NaAlg) were used as bioadhesive polymers in combination with hydroxypropyl methylcellulose (HPMC) at different ratios. Magnesium carbonate was incorporated into the formulations as a pH increasing agent. In vitro release and bioadhesion studies were performed on the developed tablets. In the formulations containing CP:HPMC, the NHT released increased with the increasing HPMC concentration whereas a decrease was observed with increasing HPMC concentration in formulations containing NaAlg:HPMC. The bioadhesive properties of the tablets containing NaAlg:HPMC was not affected by the concentration of the NaAlg (P>0.05) but increased significantly with the increasing CP concentration (P<0.05). A decrease in pH of the dissolution medium to acidic values was avoided by incorporation of magnesium hydroxide into the formulations. The developed formulations released NHT for 8 h period, and remained intact except for the formulation containing CP:HPMC at 20:80 ratio.