Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Numerical investigation of angle of attack profile on propulsion performance of an oscillating foil

Xiao, Qing and Liao, Wei (2010) Numerical investigation of angle of attack profile on propulsion performance of an oscillating foil. Computers and Fluids, 39 (8). 1366–1380. ISSN 0045-7930

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Effects of effective angle of attack (AOA) profile on an oscillating foil thrust performance are studied using a computational method. The foil is subject to a combined pitching/plunging motion with effective AOA satisfying a harmonic cosine function. To achieve this, either the pitching or plunging motion is modified from the conventional harmonic sinusoids. Investigations are performed over a series of Strouhal numbers (St), three maximum effective angles of attack and three different phase angles between pitching and plunging. It is shown that the degradation of thrust force and efficiency with sinusoidal pitching/plunging oscillation, at higher St, is effectively alleviated or removed when the AOA is imposed as a cosine profile. The improvement is more significant for the phase angle being different from 90degrees. A better performance is obtained with the imposed modification on pitching motion. The stronger reversed Von Karman vortex wake associated with leading-edge vortex development is observed with the modified motions, which is believed to induce the improved thrust performance.