Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The exponential type of the fundamental solution of an indefinite Hamiltonian system

Langer, Matthias and Woracek, Harald (2013) The exponential type of the fundamental solution of an indefinite Hamiltonian system. Complex Analysis and Operator Theory, 7 (1). pp. 285-312. ISSN 1661-8254

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The fundamental solution of a Hamiltonian system whose Hamiltonian H is positive definite and locally integrable is an entire function of exponential type. Its exponential type can be computed as the integral over $\sqrt{det H}$. We show that this formula remains true in the indefinite (Pontryagin space) situation, where the Hamiltonian is permitted to have finitely many inner singularities. As a consequence, we obtain a statement on non-cancellation of exponential growth for a class of entire matrix functions.