Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

The photoluminescence/excitation (PL/E) spectroscopy of Eu-implanted GaN

O'Donnell, K. P. and Roqan, I. S. and Wang, Ke and Lorenz, K. and Alves, E. and Bockowski, M. (2011) The photoluminescence/excitation (PL/E) spectroscopy of Eu-implanted GaN. Optical Materials, 33 (7). pp. 1063-1065.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Several distinct luminescent centres form in GaN samples doped with Eu. One centre, Eu2, recently identified as the isolated, substitutional Eu impurity, Eu(Ga), is dominant in ion-implanted samples annealed under very high pressures (1 GPa) of N(2). According to structural determinations, such samples exhibit an essentially complete removal of lattice damage caused by the implantation process. A second centre, Eu1, probably comprising Eu(Ga) in association with an intrinsic lattice defect, produces a more complex emission spectrum. In addition there are several unidentified features in the (5)D(0) to (7)F(2) spectral region near 620 nm. We can readily distinguish Eu1 and Eu2 by their excitation spectra, in particular through their different sensitivities to above-gap and below-gap excitation. The present study extends recent work on photoluminescence/excitation (PL/E) spectroscopy of Eu1 and Eu2 to arrive at an understanding of these mechanisms in terms of residual optically active defect concentrations. We also report further on the 'host-independent' excitation mechanism that is active in the case of a prominent minority centre. The relevance of this work to the operation of the red GaN:Eu light-emitting diode is discussed.