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We report the use of microfocused three-dimensional x-ray reciprocal space mapping to study

InGaN epilayers with average InN content �20%-22%. Analysis of the full volume of reciprocal

space, while probing samples on the microscale with a focused x-ray beam, allowed us to gain

valuable information about the nanostructure of InN-rich InGaN epilayers. It is found that “seed”

InGaN mosaic nanocrystallites are twisted with respect to the ensemble average and strain-free.

The initial stages of InGaN-on-GaN epitaxial growth, therefore, conform to the Volmer-Weber

growth mechanism with “seeds” nucleated on strain fields generated by the a-type edge

dislocations. VC 2011 American Institute of Physics. [doi:10.1063/1.3658619]

The III-nitride semiconductors (GaN, InN, AlN, and

their alloys) have become a subject of intense research in the

past 15 years due to the unique physical properties of these

materials, which include a wide direct bandgap, remarkable

mechanical strength and high melting temperatures, as well

as their huge commercial utility. The technological break-

through in the epitaxial growth of InGaN structures1 has rev-

olutionized the optoelectronic industry, leading recently to

robust and compact all-solid state light sources covering the

broad spectral range from infra-red to ultraviolet. However,

further advances in nitride technology, for example nitride

laser diodes emitting in the green and red spectral regions,

require a deeper understanding of the microstructure and

nanostructure of InxGa1�xN alloy films.

X-ray reciprocal space mapping (RSM) is a powerful

tool to explore the structure of materials. However, RSMs

are usually measured in two dimensions (2D) ignoring the

third dimension of diffraction space volume. The idea of full

three-dimensional (3D) diffraction space mapping to obtain

information on the 3D structure of materials was first intro-

duced by Fewster et al.2 In this letter, we report the study of

InGaN epilayers by 3D RSM while probing the material with

a microfocused x-ray beam.

The samples studied were nominally undoped wurtzite

InxGa1�xN layers, grown by metalorganic chemical vapor

deposition (MOCVD) on GaN/Al2O3 (0001) substrates. The

nominal thickness of the InGaN layers was 250 nm, whereas

the GaN buffers were �2 lm thick. The samples were grown

at the University of Gent.3

The microdiffraction experiments were carried out on

beamline B16 at the Diamond Light Source, UK. The syn-

chrotron storage ring operated at 3 GeV with a current of

200 mA. The x-ray energy, selected by a Si(111) monochro-

mator, was fixed at 12400 eV (1 Å). The x-ray beam was

focused by beryllium compound refractive lenses (CRLs). A

set of 63 lenses was used to focus the x-ray beam down to a

spot size with full widths at half maximum (FWHM) of 3.2

(horizontal) lm� 1.6 lm (vertical). The focal length was

750 mm and the effective aperture of the CRLs was calcu-

lated to be Deff� 0.6 mm resulting in horizontal and vertical

incident beam divergences of �0.8 mrad. The demagnifica-

tion factor of the lens system was estimated to be �58. The

required sample rotations and translations were performed

using a high precision 5-circle Huber diffractometer with 0.1

millidegree resolution and a Huber XYZ sample stage. A

Pilatus 100k detector with pixel size of 0.172� 0.172 mm

was used to record the diffracted x-rays from the sample.

The distance between detector and sample was 883 mm.

The measurements of the full 3D shape of the ð10�13Þ
reciprocal lattice point (RLP) were done in skew symmetric

geometry by changing the incident angle x to the diffracting

plane and recording the 2D diffraction pattern. The recipro-

cal space subtended by the detector was converted into scat-

tering vector components in the reference frame of the GaN

substrate with Qx lying along ½120�, Qy along ½100�, and Qz

along ½001� directions. The effective x-ray beam spot on the

sample was �4� 5 lm FWHM for the ð10�13Þ reflection.

Figures 1(a) and 1(b) show projections of the ð10�13Þ
RLP onto the Qy�Qz plane for samples A and B measured at

x¼ 19.424� and x¼ 19.357�, respectively. The ð10�13Þ RLP

corresponding to the InGaN epilayer is broadened due to

both compositional gradient and strain. Reciprocal space

coordinates Qy and Qz of the InGaN RLP are directly related

to the lattice constants a and c, respectively. Knowing the

lattice parameters, it is possible to estimate the InN content x
by finding physically acceptable solutions of the two dimen-

sional Poisson ratio equation.4 The following input parame-

ters required for the solution of Poisson equation were used:

lattice constants cGaN¼ 5.1850 Å, aGaN¼ 3.1892 Å for GaN

(Ref. 5) and cInN¼ 5.7033 Å, aInN¼ 3.5378 Å for InN,6 and

elastic constants7 c13¼ 103 Gpa and c33¼ 405 Gpa for GaN

and c13¼ 92 Gpa and c33¼ 224 Gpa for InN. Sample A

exhibits a compositional gradient: the InN fraction estimated

a)Author to whom correspondence should be addressed. Electronic mail:

slava.kachkanov@diamond.ac.uk.
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from the breadth of the RLP varies from 12% up to 25%.

The strain state of InGaN epilayer in this sample varies from

fully relaxed to pseudomorphic to the substrate. The center

of mass (COM) of the ð10�13Þ RLP corresponds to an InN

content of 22% under slight compressive strain. Interest-

ingly, the “seed” InGaN with 12% of InN is completely

relaxed. For sample B, the InN content ranges from 10% to

24% and the strain state changes from relaxed to pseudomor-

phic. Again, the COM of the RLP corresponds to 20% InN

under compressive strain and the “seed,” with 10% of InN, is

completely relaxed. A spatial scan across the sample B, mon-

itoring the position of the COM for the ð10�13Þ RLP and cal-

culating the InN content at each point, revealed the presence

of a weak lateral composition gradient as shown in Figure 2.

Microfocusing allows us to disentangle lateral and vertical

composition gradients on the length scales defined by the

effective size of the x-ray beam. Figure 2 shows that the

lateral composition variation is macroscopic and that it is

much weaker than the vertical composition variation for a

particular point on the sample. Figs. 1(c) and 1(d) show the

projection of the ð10�13Þ RLP on to the Qx�Qz plane for

samples A and B, respectively. What is observed here is that

the “seeds” of composition gradient in both samples are

inclined with respect to the COM of the InGaN RLP. In the

case of sample A, there are two somewhat diffuse “seed”

tails inclined by 0.40� and 0.13�, respectively. In the case of

sample B, there is only one sharp “seed” inclined by an angle

of 0.19�.

Heteroepitaxial films with large lattice mismatch to their

substrates and exhibiting a high density of dislocations are

best described as a collection of mosaic crystals.8 The layer

is assumed to consist of single crystallites, called mosaic

blocks, tilted and twisted with respect to each other. Taking

into account the geometry of the present experiments, a tilt h
along the ½120� direction corresponds mainly to a twist u

FIG. 1. (Color) (a) and (b) show projections of the

ð10�13Þ RLP onto the Qy�Qz plane for sample A and

sample B measured for x¼ 19.424� and x¼ 19.357�,
respectively, (c) and (d) are projections of the ð10�13Þ
RLP on the Qx�Qz plane for the same samples. The

inclined and vertical red lines in (a) and (b) indicate lat-

tice constants for relaxed InGaN alloys and a lattice

contstant (3.189 Å) for unstrained GaN. The “tails” of

ð10�13Þ RLPs correspond to the “seed” InGaN.

FIG. 2. (Color) Map of InN content x for InxGa1�xN sample B measured at

x¼ 19.220�.
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with respect to the ½001� direction through the following

relation

tanu ¼ � 1

sinv
tan h; (1)

where v is the angle between the ð10�13Þ and ð0001Þ
planes. Thus, the observed tilting of the “seed” corresponds

to twists by 0.75� clockwise and 0.37� anticlockwise around

the ½001� axis for sample A. For sample B “seed,” the crystal-

lites are twisted by 0.35� clockwise around the ½001� axis.

An unusual speckle pattern of diffracted x-ray intensity is

observed for the InGaN “seed” in both samples. An example

is shown in Figure 3. The appearance of the speckles is due to

partial coherence of the incident x-ray beam—the coherent

sum of the scattering from a random array of domains results

in a speckle pattern modulating a diffuse peak.9 The signifi-

cance of the speckle pattern is that it indicates that the size of

the crystallites in the “seeds” is less than the transverse x-ray

coherence length, which for B16 beamline is estimated to be

�250 nm after demagnification by CRLs and change of beam

footprint for ð10�13Þ reflection.

In summary, 3D RSM with a microfocused x-ray beam

reveals a complex structure of InGaN epilayers on the micro-

scale and smaller. Strain-free and twisted InGaN nanocrys-

tallites, less than �250 nm in lateral size, are observed at the

lower end of composition gradient. Formation of strain-free

InGaN islands during the initial phases of growth was also

observed by in-situ 2D RSM.10 Most importantly, it was

observed11 that structural and compositional disorder

increases with growth time thus supporting suggestion that

the islands observed in our ex-situ experiments correspond to

the beginning of epitaxial growth. The twist of InGaN nano-

crystallites is caused by the twist of the underlying GaN

mosaic blocks which in the case of III-nitrides was found to

be related to a-type edge dislocations.11 The average size of

the mosaic blocks in the GaN substrate, estimated from

the FWHM of the diffraction peak along Qy,12 is �50 nm

and �100 nm for samples A and B, respectively. The lattice

mismatch between InGaN and GaN may be relieved by the

microstrain associated with a-type edge dislocation. Thus,

the initial stages of InGaN epitaxial growth correspond to

Volmer-Weber growth with the nucleation of “seed” islands

on strain fields generated by the a-type edge dislocations. As

more of the substrate surface is covered, the structural disor-

der increases, as indicated by the breadth of the InGaN RLP.
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FIG. 3. (Color) The x-ray diffraction intensity speckle pattern for sample A

observed during spatial scan. Note that the image is not transformed to recip-

rocal space.
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