Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Novel mucosal vaccines generated by genetic conjugation of heterologous proteins to pneumolysin (PLY) from Streptococcus pneumoniae

Douce, Gill and Ross, Kirsty and Cowan, Graeme and Ma, Jiangtao and Mitchell, Tim J (2010) Novel mucosal vaccines generated by genetic conjugation of heterologous proteins to pneumolysin (PLY) from Streptococcus pneumoniae. Vaccine, 28 (18). pp. 3231-3237.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Induction of immunity at mucosal surfaces is thought to be an essential feature in the protection of the host against the many pathogens that gain access through these surfaces. Here we describe how strong local and systemic immune responses can be generated when proteins are genetically conjugated to pneumolysin (PLY) from Streptococcus pneumoniae. Using green fluorescent protein (eGFP) and PsaA from S. pneumoniae, we have shown that genetic fusion (eGFPPLY and PsaAPLY) is essential to ensure high levels of antigen specific IgG and IgA in the serum and at mucosal surfaces. This form of vaccination is highly effective with antigen specific antibodies detected after a single dose of nanogram quantities of the conjugated proteins. In addition, generation of a non-toxic variant (eGFPDelta6PLY) indicated that while the toxic activity of PLY was not essential for adjuvanticity, it contributed to the magnitude of the response generated. Whilst vaccination with the PsaAPLY fusion proteins did not protect the animals from challenge, these studies confirm the utility of pneumolysin to act as a novel mucosal adjuvant to substantially increase the local and systemic humoral response to genetically fused protein antigens.