Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Investigating the aging behavior of polysiloxane nanocomposites with degradative thermal analysis and broadband dielectric spectroscopy

Lewicki, James P. and Hayward, David and Liggat, John J. and Pethrick, Richard A. (2007) Investigating the aging behavior of polysiloxane nanocomposites with degradative thermal analysis and broadband dielectric spectroscopy. In: 233rd ACS National Meeting, 2007-03-25 - 2007-03-29.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The physical and chemical aging of polysiloxane elastomers incorporating nano-scale particles of differing dimensions and aspect ratios is reported. A series of model polysiloxane nanocomposites have been prepared incorporating montmorillonite nanoclay and polyhedralsilsesquioxane (POSS). Broadband Dielectric Spectroscopy (BDS) has been employed to study the effects of aging on polymer-filler interactions within the nanocomposites by tracking changes in system ionic mobility and filler-induced Maxwell-Wagner-Sillars effects. TGA and DSC have been utilized to study the effects of aging on the non-oxidative stability of the nanocomposites. The complex evolution of volatiles that occurs during aging has been studied using Sub-Ambient Thermal Volatilization Analysis (SATVA). Results indicate that significant physical and chemical changes take place within the nanocomposites upon aging; acid catalyzed hydrolysis, chain backbiting and recombination reactions are re-structuring the polymer-filler network into a more thermodynamically stable form. The nature and magnitude of these processes is dependant on the nano-filler present.