Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

A fault detection and isolation filter for discrete linear systems

Giovanini, L. and Dondo, R. (2003) A fault detection and isolation filter for discrete linear systems. ISA Transactions, 42 (4). pp. 307-317. ISSN 0019-0578

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The problem of fault and/or abrupt disturbances detection and isolation for discrete linear systems is analyzed in this work. A strategy for detecting and isolating faults and/or abrupt disturbances is presented. The strategy is an extension of an already existing result in the continuous time domain to the discrete domain. The resulting detection algorithm is a Kalman filter with a special structure. The filter generates a residuals vector in such a way that each element of this vector is related with one fault or disturbance. Therefore the effects of the other faults, disturbances, and measurement noises in this element are minimized. The necessary stability and convergence conditions are briefly exposed. A numerical example is also presented.