Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Wavelet treatment of the intrachain correlation functions of homopolymers in dilute solutions

Fedorov, M V and Chuev, G N and Kuznetsov, Y A and Timoshenko, E G (2004) Wavelet treatment of the intrachain correlation functions of homopolymers in dilute solutions. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 70 (5). -. ISSN 1063-651X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Discrete wavelets are applied to the parametrization of the intrachain two-point correlation functions of homopolymers in dilute solutions obtained from Monte Carlo simulations. Several orthogonal and biorthogonal basis sets have been investigated for use in the truncated wavelet approximation. The quality of the approximation has been assessed by calculation of the scaling exponents obtained from the des Cloizeaux ansatz for the correlation functions of homopolymers with different connectivities in a good solvent. The resulting exponents are in better agreement with those from recent renormalization group calculations as compared to the data without the wavelet denoising. We also discuss how the wavelet treatment improves the quality of data for correlation functions from simulations of homopolymers at varied solvent conditions and of heteropolymers.

Item type: Article
ID code: 35689
Keywords: weigheted density approximation, n-body simulations, electronic structure, polymer solutions, thermodynamics, equations, liquids, Physics, Physics and Astronomy(all), Mathematical Physics, Statistical and Nonlinear Physics, Condensed Matter Physics
Subjects: Science > Physics
Department: Faculty of Science > Physics
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 08 Nov 2011 15:17
    Last modified: 05 Sep 2014 13:34
    URI: http://strathprints.strath.ac.uk/id/eprint/35689

    Actions (login required)

    View Item