Picture of scraped petri dish

Scrape below the surface of Strathprints...

Explore world class Open Access research by researchers at the University of Strathclyde, a leading technological university.

Explore

3D wavelet treatment of solvated bipolaron and polaron

Chuev, G N and Fedorov, M V and Luo, H J and Kolb, D and Timoshenko, E G (2005) 3D wavelet treatment of solvated bipolaron and polaron. Journal of Theoretical and Computational Chemistry, 4 (3). pp. 751-767. ISSN 0219-6336

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Three-dimensional discrete tensor wavelets are applied to calculate wave functions of excess electrons solvated in polar liquids. Starting from the Hartree-Fock approximation for the electron wave functions and from the linear response to the solute charge for the solvent, we have derived the approximate free energy functional for the excess electrons. The orthogonal Coifman basis set is used to minimize the free energy functional and to approximate the electron wave functions. The scheme is applied to the calculation of the properties of the solvated electron and the singlet bipolaron formation. The obtained results indicate that the proposed algorithm is fast and rather efficient for calculating the electronic structure of the solvated molecular solutes.