Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Thermally induced inactivation and aggregation of urease : experiments and population balance modelling

Grancic, Peter and Illeova, Viera and Polakovic, Milan and Sefcik, Jan (2012) Thermally induced inactivation and aggregation of urease : experiments and population balance modelling. Chemical Engineering Science, 70. 14–21. ISSN 0009-2509

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We present a population balance model for enzyme deactivation and aggregation kinetics with a limited number of physically relevant parameters and use this model to analyse the experimental data for thermal inactivation of jack bean urease. The time dependence of the relative enzymatic activity was found to follow the second order kinetics, which was consistent with pre-equilibrated folding/unfolding of the native enzyme, followed by irreversible cluster–cluster aggregation of the non-native enzyme resulting in gradual and permanent loss of enzymatic activity. Monomer–cluster aggregation scenario was considered but was not consistent with the observed kinetic order of monomer disappearance at longer times. We analysed time evolution of the average hydrodynamic radius obtained from dynamic light scattering measurements and by fitting these data with our model, we were able to estimate the value of the unfolding equilibrium constant with a reasonable accuracy (Kc around 0.05 at 80 degrees C). We were also able to make order of magnitude estimates of the maximum number of enzyme molecules in the aggregated clusters (hundreds)as well as the aggregation rate constant of the non-native enzyme.