Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Theory of free-electron maser with two-dimensional distributed feedback driven by an annular electron beam

Ginzburg, N S and Peskov, N Y and Sergeev, A S and Konoplev, I V and Cross, A W and Phelps, A D R and Robb, G R M and Ronald, K and He, W and Whyte, C G (2002) Theory of free-electron maser with two-dimensional distributed feedback driven by an annular electron beam. Journal of Applied Physics, 92 (3). pp. 1619-1629. ISSN 0021-8979

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The use of two-dimensional (2D) distributed feedback is considered as a method of providing spatially coherent radiation from an oversized annular electron beam. To realize the feedback mechanism, 2D Bragg structures formed from doubly-corrugated waveguide sections of coaxial geometry are suggested. The properties of two types of coaxial cavities formed using such structures are compared: a single-section 2D Bragg cavity and a two-mirror cavity. The eigenmodes of both cavities are found and their high selectivity over both azimuthal and longitudinal indices was demonstrated. Time-domain analyses of the excitation of the cavities by an annular electron beam were carried out. The influence of the cavity parameters on the oscillation regime is analyzed and discussed. It was shown that for a specific set of 2D Bragg cavity parameters it is possible to obtain a regime of steady-state oscillations when the transverse size of the beam exceeds the wavelength by a few orders of magnitude, while outside this parameter space multimode oscillation takes place. The design of a 2D Bragg free-electron maser oscillator based on a high-current accelerator at the University of Strathclyde is discussed. (C) 2002 American Institute of Physics.