Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Gyro-TWT with a helical operating waveguide: new possibilities to enhance efficiency and frequency bandwidth

Denisov, G G and Bratman, V L and Phelps, A D R and Samsonov, S V (1998) Gyro-TWT with a helical operating waveguide: new possibilities to enhance efficiency and frequency bandwidth. IEEE Transactions on Plasma Science, 26 (3). pp. 508-518. ISSN 0093-3813

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A helical corrugation of the inner surface of an oversized cylindrical waveguide provides, for certain parameters, an almost constant value of group velocity and close to zero longitudinal wavenumber of an eigenwave for a very broad frequency band. The use of such a helical waveguide as an operating section of a gyrotron traveling wave tube (gyro-TWT) allows significant widening of its bandwidth and an increase in the efficiency at very large particle velocity spreads. In this paper, the new concept is confirmed by theoretical analysis and "cold" measurements of the helical waveguide dispersion. Results of a linear and nonlinear theory of the helical gyro-TWT as well as two designs for subrelativistic (80 keV, 20 A) and relativistic (300 keV, 80 A) electron beams are also presented. For both designs, parameters providing a very broad frequency band (about 20%) and high efficiency (above 30%) have been found, When the transverse velocity spread is increased from zero up to a very high value of 40 %, simulations showed only a 20%-30% narrowing in the frequency band and a 20% decrease in electron efficiency. The theoretical analysis demonstrates important advantages of the helical gyro-TWT over the "smooth" one in frequency bandwidth, sensitivity to electron velocity spread, and stability to parasitic self-excitation.