Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Gyro-TWT with a helical operating waveguide: new possibilities to enhance efficiency and frequency bandwidth

Denisov, G G and Bratman, V L and Phelps, A D R and Samsonov, S V (1998) Gyro-TWT with a helical operating waveguide: new possibilities to enhance efficiency and frequency bandwidth. IEEE Transactions on Plasma Science, 26 (3). pp. 508-518. ISSN 0093-3813

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A helical corrugation of the inner surface of an oversized cylindrical waveguide provides, for certain parameters, an almost constant value of group velocity and close to zero longitudinal wavenumber of an eigenwave for a very broad frequency band. The use of such a helical waveguide as an operating section of a gyrotron traveling wave tube (gyro-TWT) allows significant widening of its bandwidth and an increase in the efficiency at very large particle velocity spreads. In this paper, the new concept is confirmed by theoretical analysis and "cold" measurements of the helical waveguide dispersion. Results of a linear and nonlinear theory of the helical gyro-TWT as well as two designs for subrelativistic (80 keV, 20 A) and relativistic (300 keV, 80 A) electron beams are also presented. For both designs, parameters providing a very broad frequency band (about 20%) and high efficiency (above 30%) have been found, When the transverse velocity spread is increased from zero up to a very high value of 40 %, simulations showed only a 20%-30% narrowing in the frequency band and a 20% decrease in electron efficiency. The theoretical analysis demonstrates important advantages of the helical gyro-TWT over the "smooth" one in frequency bandwidth, sensitivity to electron velocity spread, and stability to parasitic self-excitation.