Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Gyrotron traveling wave amplifier with a helical interaction waveguide

Denisov, G G and Bratman, V L and Cross, A W and He, W and Phelps, A D R and Ronald, K and Samsonov, S V and Whyte, C G (1998) Gyrotron traveling wave amplifier with a helical interaction waveguide. Physical Review Letters, 81 (25). pp. 5680-5683. ISSN 0031-9007

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A new microwave system in the form of a cylindrical waveguide with a helical corrugation of the inner surface is proposed for a gyrotron traveling wave tube (gyro-TWT). The corrugation radically changes the wave dispersion in the region of small axial wave numbers. This allows significant reduction in the sensitivity of the amplifier to the electron velocity spread and an increase in its frequency bandwidth. An X-band gyro-TWT operating at the second cyclotron harmonic with a 200-keV, 25-A electron beam produced an output power of 1 MW, corresponding to a gain of 23 dB and an efficiency of 20%.