Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Magnetic crosstalk compensation for an optical current transducer

Niewczas, P. and Madden, W.I. and Michie, W.C. and Cruden, A.J. and McDonald, J.R. (2001) Magnetic crosstalk compensation for an optical current transducer. IEEE Transactions on Instrumentation and Measurement, 50 (5). pp. 1071-1075. ISSN 0018-9456

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this paper we analyse the errors associated with magnetic cross-talk within point type, or unlinked, Optical Current Transducers (OCTs) working in the three-phase electric current transmission systems. It is shown that, for most practical conductor arrangements, the magnetic cross-talk is sufficient to introduce errors unacceptable for the accuracy requirements demanded front the OCT. A solution to this problem is devised around a unique compensation method which solves, in real time, a set of linear equations, each representing the instantaneous output signal from one phase current sensor. The equations are created using calibration factors which can be evaluated for the particular conductors arrangement using experimental or analytical methods. The solution of the above set of equations may be implemented using Digital Signal Processing (DSP), which provides the number of sought instantaneous values of currents in the considered conductors arrangement.