Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Magnetic crosstalk compensation for an optical current transducer

Niewczas, P. and Madden, W.I. and Michie, W.C. and Cruden, A.J. and McDonald, J.R. (2001) Magnetic crosstalk compensation for an optical current transducer. IEEE Transactions on Instrumentation and Measurement, 50 (5). pp. 1071-1075. ISSN 0018-9456

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this paper we analyse the errors associated with magnetic cross-talk within point type, or unlinked, Optical Current Transducers (OCTs) working in the three-phase electric current transmission systems. It is shown that, for most practical conductor arrangements, the magnetic cross-talk is sufficient to introduce errors unacceptable for the accuracy requirements demanded front the OCT. A solution to this problem is devised around a unique compensation method which solves, in real time, a set of linear equations, each representing the instantaneous output signal from one phase current sensor. The equations are created using calibration factors which can be evaluated for the particular conductors arrangement using experimental or analytical methods. The solution of the above set of equations may be implemented using Digital Signal Processing (DSP), which provides the number of sought instantaneous values of currents in the considered conductors arrangement.