Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Interrogation of extrinsic Fabry-Perot interferometric sensors using arrayed waveguide grating devices

Niewczas, P. and Dziuda, L. and Fusiek, G. and Willshire, A.J. and McDonald, J.R. and Thursby, G.J. and Harvey, D. and Michie, W.C. (2003) Interrogation of extrinsic Fabry-Perot interferometric sensors using arrayed waveguide grating devices. IEEE Transactions on Instrumentation and Measurement, 52 (8). pp. 1092-1096. ISSN 0018-9456

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this paper we present details of a solid state interrogation system based on a 16-channel arrayed waveguide grating (AWG) for interrogation of extrinsic Fabry-Perot interferometric (EFPI) sensors. The sensing element is configured in a reflecting mode and is illuminated by a broad-band light source through an optical fiber. The spectrum of light reflected from the sensor is analyzed using an AWG device acting as a coarse spectrometer. Using measurement points from the AWG channels, the original spectrum of the sensing element is reconstructed by a means of curve fitting. This allows sufficient information for the position of the reflection peak (or inverted peak) to be uniquely determined and the value of a measurement quantity obtained. In addition to the theoretical simulations of the proposed measurement system, we provide details of the laboratory evaluation using an EFPI strain sensor.