Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Acousto-ultrasonic sensing using fibre Bragg gratings

Betz, D. and Thursby, G.J. and Culshaw, B. and Staszewski, W. (2003) Acousto-ultrasonic sensing using fibre Bragg gratings. Smart Materials and Structures, 12 (1). pp. 122-128. ISSN 0964-1726

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper describes a fiber-optic system which is able to detect ultrasound in structures. The aim of the sensing system is to monitor structures, in particular aircraft structures, by detecting ultrasonic Lamb waves. This type of monitoring technique has recently become a key topic in structural health monitoring. Most common approaches use piezoceramic devices to launch and receive the ultrasound. A new way of fiber-optic detection of Lamb waves is based on fiber Bragg grating sensors. In addition to the well known advantages of fiber-optic sensors, this new interrogation scheme allows the use of Bragg gratings for both high-resolution strain and high-speed ultrasound detection. The focus of the paper is on the ultrasonic part of the system. The theoretical approach and the implementation into a laboratory set-up are elaborated. Experiments have been carried out to calibrate the system and first results on simple structures show the feasibility of the system for sensing ultrasonic Lamb waves.