Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Resonances of a λ-rational Sturm–Liouville problem

Langer, Matthias (2001) Resonances of a λ-rational Sturm–Liouville problem. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 131 (3). pp. 709-720. ISSN 0308-2105

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We consider a family of self-adjoint 2 × 2-block operator matrices Ã_\theta in the space L_2(0,1) \oplus L_2(0,1), depending on the real parameter \theta. If Ã_0 has an eigenvalue that is embedded in the essential spectrum, then it is shown that for \theta ≠ 0 this eigenvalue in general disappears, but the resolvent of Ã_\theta has a pole on the unphysical sheet of the Riemann surface. Such a pole is called a resonance pole. The unphysical sheet arises from analytic continuation from the upper half-plane C^+ across the essential spectrum. Furthermore, the asymptotic behaviour of this resonance pole for small \theta is investigated. The results are proved by considering a certain λ-rational Sturm–Liouville problem and its Titchmarsh–Weyl coefficient.