Picture of scraped petri dish

Scrape below the surface of Strathprints...

Explore world class Open Access research by researchers at the University of Strathclyde, a leading technological university.

Explore

Multi-agent collaborative search : an agent-based memetic multi-objective optimization algorithm applied to space trajectory design

Vasile, M. and Zuiani, F. (2011) Multi-agent collaborative search : an agent-based memetic multi-objective optimization algorithm applied to space trajectory design. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 225 (11). pp. 1211-1227. ISSN 0954-4100

[img]
Preview
PDF
EPICMOO_ImechEGm2.pdf - Draft Version

Download (2MB) | Preview
[img]
Preview
PDF
Vasile_M_Multi_agent_collaborative_search_an_agent_based_memetic_multi_objective_optimization..._Nov_2011.pdf - Draft Version

Download (1MB) | Preview

Abstract

This article presents an algorithm for multi-objective optimization that blends together a number of heuristics. A population of agents combines heuristics that aim at exploring the search space both globally and in a neighbourhood of each agent. These heuristics are complemented with a combination of a local and global archive. The novel agent-based algorithm is tested at first on a set of standard problems and then on three specific problems in space trajectory design. Its performance is compared against a number of state-of-the-art multi-objective optimization algorithms that use the Pareto dominance as selection criterion: non-dominated sorting genetic algorithm (NSGA-II), Pareto archived evolution strategy (PAES), multiple objective particle swarm optimization (MOPSO), and multiple trajectory search (MTS). The results demonstrate that the agent-based search can identify parts of the Pareto set that the other algorithms were not able to capture. Furthermore, convergence is statistically better although the variance of the results is in some cases higher.