Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Multi-agent collaborative search : an agent-based memetic multi-objective optimization algorithm applied to space trajectory design

Vasile, M. and Zuiani, F. (2011) Multi-agent collaborative search : an agent-based memetic multi-objective optimization algorithm applied to space trajectory design. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 225 (11). pp. 1211-1227. ISSN 0954-4100

[img]
Preview
PDF
EPICMOO_ImechEGm2.pdf - Preprint

Download (2MB) | Preview
[img]
Preview
PDF
Vasile_M_Multi_agent_collaborative_search_an_agent_based_memetic_multi_objective_optimization..._Nov_2011.pdf - Preprint

Download (1MB) | Preview

Abstract

This article presents an algorithm for multi-objective optimization that blends together a number of heuristics. A population of agents combines heuristics that aim at exploring the search space both globally and in a neighbourhood of each agent. These heuristics are complemented with a combination of a local and global archive. The novel agent-based algorithm is tested at first on a set of standard problems and then on three specific problems in space trajectory design. Its performance is compared against a number of state-of-the-art multi-objective optimization algorithms that use the Pareto dominance as selection criterion: non-dominated sorting genetic algorithm (NSGA-II), Pareto archived evolution strategy (PAES), multiple objective particle swarm optimization (MOPSO), and multiple trajectory search (MTS). The results demonstrate that the agent-based search can identify parts of the Pareto set that the other algorithms were not able to capture. Furthermore, convergence is statistically better although the variance of the results is in some cases higher.