Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Cylindrical periodic surface lattice as a metadielectric : concept of a surface-field Cherenkov source of coherent radiation

Konoplev, I. V. and MacLachlan, A. J. and Robertson, Craig and Cross, A. W. and Phelps, A. D. R. (2011) Cylindrical periodic surface lattice as a metadielectric : concept of a surface-field Cherenkov source of coherent radiation. Physical Review A, 84 (1). ISSN 1094-1622

[img]
Preview
PDF (Konoplev_et_al Phys. Rev. A 2011)
Konoplev_et_al_Phys._Rev._A_2011.pdf - Final Published Version

Download (1MB) | Preview

Abstract

A two-dimensional (2D), cylindrical, periodic surface lattice (PSL) forming a surface field cavity is considered. The lattice is created by introducing 2D periodic perturbations on the inner surface of a cylindrical waveguide. The PSL facilitates a resonant coupling of the surface and near cutoff volume fields, leading to the formation of a high-Q cavity eigenmode. The cavity eigenmode is described and investigated using a modal approach, considering the model of a cylindrical waveguide partially loaded with a metadielectric. By using a PSL-based cavity, the concept of a high-power, 0.2-THz Cherenkov source is developed. It is shown that if the PSL satisfies certain defined conditions, single-mode operation is observed.