Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Determination of lamb wave dispersion data in lossy anisotropic plates using time domain finite element analysis - Part 1 - theory and experimental verification

Hayward, G. and Hyslop, J. (2006) Determination of lamb wave dispersion data in lossy anisotropic plates using time domain finite element analysis - Part 1 - theory and experimental verification. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53 (2). pp. 443-448. ISSN 0885-3010

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A theoretical and experimental approach for extraction of guided wave dispersion data in plate structures is described. Finite element modeling is used to calculate the surface displacement data (in-plane and out-of-plane) when the plate is subject to either symmetrical or antisymmetrical impulsive force stimulation at one or both of the parallel faces. Fourier transformation of the resultant space-time displacement histories is then employed to obtain phase velocity as a function of frequency. Experimental verification in the case of antisymmetrical stimulation is provided by means of a high-power Q-switched laser source that is used to excite guided waves in the plate. The subsequent out-of-plane displacement data were then obtained by means of a scanning laser vibrometer, and good agreement between theory and experiment is demonstrated. Examples of dispersion data are provided for aluminum, and excellent correlation between the data sets and conventional Rayleigh-Lamb theory for plate structures was obtained. This was then extended to lossy polymeric plates, in addition to both unpolarized and polarized piezoelectric ceramic plates, again with good agreement between the finite element modeling and optical experiments. The last set of results prepares the way for a detailed investigation of the nonhomogeneous piezoelectric composite waveguides described in a companion paper (Part II).

Item type: Article
ID code: 3538
Keywords: Fourier transforms, Q-switching, Rayleigh waves, acoustic dispersion, dielectric polarisation, laser beam applications, lasers, surface acoustic waves, Electrical engineering. Electronics Nuclear engineering
Subjects: Technology > Electrical engineering. Electronics Nuclear engineering
Department: Faculty of Engineering > Electronic and Electrical Engineering
Unknown Department
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 02 Oct 2007
    Last modified: 12 Mar 2012 10:39
    URI: http://strathprints.strath.ac.uk/id/eprint/3538

    Actions (login required)

    View Item