Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Improving the thermal stability of 1-3 piezoelectric composite transducers

Parr, A.C.S. and O'Leary, R.L. and Hayward, G. (2005) Improving the thermal stability of 1-3 piezoelectric composite transducers. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 52 (4). pp. 550-563. ISSN 0885-3010

Text (Parr-etal-IEEE-TUFFC-2005-Improving-the-thermal-stability-of-1-3-piezoelectric)
Parr_etal_IEEE_TUFFC_2005_Improving_the_thermal_stability_of_1_3_piezoelectric.pdf - Accepted Author Manuscript

Download (1MB) | Preview


The effect of temperature on the behavior of 1-3 piezoelectric composites manufactured using various polymeric materials was assessed experimentally through electrical impedance analysis and laser vibrometry. Device behavior varied with temperature irrespective of the polymer filler. Most significant changes in the piezoelectric composites were recorded around the glass transition temperature (T/sub g/) of the polymer; movement to lower fundamental resonant frequencies and higher values of electrical impedance minima were observed at higher temperatures. Decoupling of the pillars from the polymer matrix was observed by laser vibrometry at high temperatures. The use of high T/sub g/ polymer extended the operational temperature range of a piezoelectric composite, and a high T/sub g/ polymer with improved thermal conductivity also proved beneficial. For all devices, at temperatures very close to room temperature, subtle changes in device performance, linked to polymer softening were observed. Particulate-filled materials have been investigated, and it is recognized that the high viscosities and low mechanical damping of such materials could be problematic for piezoelectric composite manufacture. The thermal solver of the PZFlex finite element code has been used to predict the temporal and spatial temperature response of a selection of the devices presented. The simulated and experimental data compare favorably.