Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Direct measurement of rheologically induced molecular orientation in gas separation hollow fibre membranes and effects on selectivity

Ismail, A.F. and Shilton, S.J. and Dunkin, I.R. and Gallivan, S.L. (1997) Direct measurement of rheologically induced molecular orientation in gas separation hollow fibre membranes and effects on selectivity. Journal of Membrane Science, 126 (1). pp. 133-137. ISSN 0376-7388

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Asymmetric polysulfone hollow fibre membranes for gas separation were spun using a dry/wet spinning process. An optimised four component dope solution was used: 22% (w/w) polysulfone, 31.8% (w/w) N,N-dimethylacetamide, 31.8% (w/ w) tetrahydrofuran and 14.4% (w/w) ethanol. Fibres were spun at low- and high-dope extrusion rates and hence at different levels of shear. Molecular orientation in the active layer of the membranes was measured by plane-polarised infrared spectroscopy. Gas permeation properties (permeability and selectivity) were evaluated using pure carbon dioxide and methane. The spectroscopy indicated that increased molecular orientation occurs in the high-shear membranes. The selectivities of these membranes were heightened and even surpassed the recognised intrinsic selectivity of the membrane polymer. The results suggest that increased shear during spinning increases molecular orientation and, in turn, enhances selectivity.

Item type: Article
ID code: 35363
Keywords: hollow fibre membranes, gas separation , spectroscopy, molecular orientation, enhanced selectivity, Chemistry, Biochemistry, Filtration and Separation, Materials Science(all), Physical and Theoretical Chemistry
Subjects: Science > Chemistry
Department: Faculty of Engineering > Chemical and Process Engineering
Faculty of Science > Pure and Applied Chemistry
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 03 Nov 2011 19:16
    Last modified: 05 Sep 2014 13:07
    URI: http://strathprints.strath.ac.uk/id/eprint/35363

    Actions (login required)

    View Item