Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Low peak-power laser ultrasonics

Pierce, Stephen and Cleary, Alison and Veres, Istvan and Culshaw, Brian and Thursby, Graham and Mckee, Campbell and Swift, C. and Armstrong, Ian (2011) Low peak-power laser ultrasonics. Nondestructive Testing and Evaluation, 26 (3-4). pp. 281-301.

Full text not available in this repository. (Request a copy from the Strathclyde author)


Techniques for the successful excitation of guided ultrasonic waves using a low peak-power laser ultrasonic source are discussed and compared with more conventional Q-switched laser sources. The paper considers acoustic propagation in thin plates, in which the frequencies used, typically only the fundamental guided wave modes, are considered. Aspects of excitation and detection geometry are considered along with the physical mechanisms of photo-acoustic generation and the practical issues surrounding available source wavelengths and power outputs. Understanding of the effects of these constraints is critical for the successful application of the technique. Continuous wave excitation and fully arbitrary modulation schemes are compared, and a technique to control the bandwidth of Golay code modulation is introduced. It is shown that earlier work by the authors was capable of guided wave detection at peak-power densities of 104 W cm− 2. Later work has focussed on the use of erbium-doped fibre amplifiers combined with Golay code modulation to improve the recovered signal-to-noise ratio. Two key applications of the techniques are considered: material properties measurements (using inversion of dispersion curve data) and acoustic emission system calibration.