Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Mixed state geometric phases, entangled systems, and local unitary transformations

Ericsson, M and Pati, A K and Sjoqvist, E and Brannlund, J and Oi, D K L (2003) Mixed state geometric phases, entangled systems, and local unitary transformations. Physical Review Letters, 91 (9). -. ISSN 0031-9007

[img]
Preview
PDF
0206063v2.pdf - Preprint

Download (146kB) | Preview

Abstract

The geometric phase for a pure quantal state undergoing an arbitrary evolution is a "memory" of the geometry of the path in the projective Hilbert space of the system. We find that Uhlmann's geometric phase for a mixed quantal state undergoing unitary evolution depends not only on the geometry of the path of the system alone but also on a constrained bilocal unitary evolution of the purified entangled state. We analyze this in general, illustrate it for the qubit case, and propose an experiment to test this effect. We also show that the mixed state geometric phase proposed recently in the context of interferometry requires unilocal transformations and is therefore essentially a property of the system alone.