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An experimental observation of geometric phases for mixed states using NMR
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Examples of geometric phases abound in many areas of physics. They offer both fundamental
insights into many physical phenomena and lead to interesting practical implementations. One of
them, as indicated recently, might be an inherently fault-tolerant quantum computation. This,
however, requires to deal with geometric phases in the presence of noise and interactions between
different physical subsystems. Despite the wealth of literature on the subject of geometric phases
very little is known about this very important case. Here we report the first experimental study
of geometric phases for mixed quantum states. We show how different they are from the well
understood, noiseless, pure-state case.

PACS numbers: 03.65.Bz, 42.50.Dv, 76.60.-k

A quantum system can retain a memory of its motion
when it undergoes a cyclic evolution, e.g its quantum
state may acquire a geometric phase factor in addition
to the dynamical one [1, 2]. For pure quantum states
this effect is well understood and it has been demon-
strated in a wide variety of physical systems [3]. Its po-
tential application to perform the fault-tolerant quantum
computation has been the subject of more recent inves-
tigations [4, 5, 6]. In contrast, relatively little is known
about geometric phases, and more generally, about quan-
tum holonomies of mixed or entangled quantum states.
Here we report an NMR experiment which constitutes
the first experimental study of quantum holonomies for
mixed quantum states. We observed and measured the
geometric phase of a mixed state of a spin half nuclei.
Our experimental data are in a good agreement with the
recent theoretical predictions by Sjöqvist et al [7].

The geometric phase of pure states is an intriguing
property of quantum systems undergoing parallel cyclic
evolutions. The parallel transport of a particular vector
|Ψ〉 implies no change in phase when |Ψ(t)〉 evolves into
|Ψ(t + dt)〉, for some infinitesimal change of the param-
eter t. Although locally there is no phase change, the
system may acquire a non-trivial phase after completing
a closed loop parameterized by t. The origin of this phase
can be traced to an underlying curvature of the param-
eter space, depending only on the geometry of the path
and is resilient to certain dynamical perturbations of the
evolution, e.g. it is independent of the speed of the evolu-
tion. Therefore, it is a potential method for performing
intrinsically fault-tolerant quantum logic gates, a very
desirable feature for practical implementations of quan-

tum computation. However, quantum systems that inter-
act with other systems, be it components in a quantum
computer or otherwise, become entangled and cannot be
described by a state vector |Ψ〉. In this context the no-
tion of parallel transport and geometric phases must be
extended to mixed quantum states.

Mathematically, Uhlmann was the first to address the
issue of a mixed state holonomy [8]. In his approach a
system in a mixed state is embedded, as a subsystem, in a
larger system that is in a pure state. Given a mixed state
of the subsystem there are infinitely many corresponding
pure states, known as purifications, of the larger system.
Thus a cyclic evolution of the density operator pertaining
to the subsystem induces infinitely many possible evolu-
tions of the larger, purified system. Uhlmann singles out
the evolution in which the purified state is transported
in a maximally parallel manner. In order to satisfy this
condition, one has to induce a suitable evolution on all
auxiliary subsystems with which the original subsystem
is entangled.

More recently Sjöqvist et al [7] took a different ap-
proach in which there is no need for a direct reference
to auxiliary subsystems [9]. In their case each eigenvec-
tor of the initial density matrix is parallel transported
independently and may acquire a geometric phase factor
γn. The mixed state phase factor is then obtained as an
average of the individual phase factors, weighted by their
eigenvalues pn,

veiγ =
∑

n

pneiγ
n . (1)

This geometric phase factor can also be understood us-
ing purifications [7], though operations on auxiliary sub-
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FIG. 1: A quantum network describing the experiment. The
top horizontal line represents an auxiliary spin half particle,
or an auxiliary qubit, labelled as qubit “a”. The bottom line
represents a qubit labelled as “b”, in state ρ

b
which undergoes

a cyclic evolution induced by a unitary operation U . We
choose our reference basis, for qubits“a” and “b”, to be states
| ↑〉 and | ↓〉. They describe the spin state aligned with or
against a static magnetic field B0 applied in the z-direction.
In this basis |±〉 = 1√

2
(| ↑〉 ± | ↓〉) thus the initial state of the

auxiliary qubit is |+〉a. Projectors |±〉〈±| can also be written
as 1

2
(1 ± σx).

systems are unconstrained and as such they include
Uhlmann’s approach as a special case.

Definitions, by definition, are never wrong or right,
just more or less useful, thus we are not in a position to
refute either of the two approaches. Here we investigate
the holonomies of mixed quantum states and show that
experimental data are consistent with the approach by
Sjöqvist et al [7].

In our NMR experiment we focused on a mixed state
of a spin half nuclei. Its density operator can be written
in terms of the Bloch vector ~r and the Pauli matrices
~σ = {σx, σy, σz}, as ρ = 1

2
(11 + ~r · ~σ). It represents a

mixture of its two eigenvectors with eigenvalues 1
2
(1± r).

The length of the Bloch vector r gives the measure of
the purity of the state – from maximally mixed r = 0 to
pure r = 1. We use the gradient pulses to produce mixed
states of different purities r. We then evolve the Bloch
vector ~r so that it traces out a curve C that subtends the
solid angle Ω. For spin half particles, Eq. (1) gives

veiγ = cosΩ/2 + ir sin Ω/2. (2)

This phase factor can be estimated from the visibility
in an interference experiment [7]. In our experiment we
measure the geometric phase

γ = − arctan

(

r tan
Ω

2

)

(3)

using an auxiliary spin half particle for the phase refer-
ence. A succinct description of the experiment is given
in Fig. (1). Adopting the nomenclature from quantum
information science we will sometimes refer to spin half
particles as qubits.

The central element in Fig. (1) is the controlled-U op-
eration. In our case: the state ρb traces out a closed path
C : t ∈ [0, τ ] → ρ (t) = U (t) ρ (0)U † (t) on the Bloch
sphere with a solid angle Ω, but only when the auxiliary
qubit is in state | ↑〉a; when the auxiliary qubit is in state

FIG. 2: The cyclic path ABCDA subtends the solid angle
Ω on the Bloch sphere. The solid angle can be changed by
varying θ - the angle of inclination between the x, y-plane and
the ABC plane (or the ADC plane). In the experiment the
Bloch vectors of different lengths r follow the path identical
to the ABCDA but right below it, at the distance r from the
centre of the sphere. The two Bloch vectors corresponding
to the two eigenvectors of the density operator are the unit
vectors ±~r/r. In the cyclic evolution one of them follows the
path ABCDA and subtends the solid angle Ω and the other
follows the path symmetrically on the opposite side of the
sphere and subtends the solid angle −Ω.

| ↓〉a the state ρb is not affected. Such a controlled evo-
lution can be realized in NMR with the scalar spin-spin
coupling of the two spins. It effectively introduces a rel-
ative phase shift between the states | ↑〉a and | ↓〉a of the
auxiliary qubit. In the experiment, the unitary opera-
tion which induces the cyclic motion completes the loop
along the two geodesics, ABC and CDA, as illustrated
in Fig.(2). It satisfies the parallel transport condition
defined in [7] and thus the dynamic phase vanishes.

In our experiment the geometric phase for mixed states
was observed using an NMR spectrometer. We used a
0.5 ml, 200 mmol sample of Carbon-13 labelled chloro-
form (Cambridge Isotopes) in d6 acetone. The single 13C
nucleus was used as the auxiliary qubit while the 1H nu-
cleus was used as the qubit on which the cyclic evolution
was executed. The reduced Hamiltonian for this two-spin
system is, to an excellent approximation, given by

H = ωaIa
z + ωbI

b
z + 2πJ Ia

z Ib
z . (4)

The first two terms in the Hamiltonian describe the free
precession of spin “a” (13C) and spin “b” (1H) around
the magnetic field B0 with frequencies ωa/2π ≈ 100MHz
and ωb/2π ≈ 400MHz. The Ia

z and Ib
z are the z-

components of the angular momentum operator for “a”
and “b” respectively (Iz ≡ 1

2
σz). The third term of

the Hamiltonian describes a scalar spin-spin coupling
of the two spins with J = 214.5Hz. In our experi-
ment, we varied the solid angle Ω, and for each Ω we
measured the geometric phase γ for twelve values of
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r = cos nπ
12

, n = 0, 1, . . . , 11.
Let us now describe step by step different stages of the

experiment in more detail.
(E1) Preparation of the initial state: Initially the

two qubits are in thermal equilibrium with the environ-
ment and their state is described by the density opera-
tor ρth ∝ σa

z + 4σb
z. We use the spatial averaging tech-

nique [10] to create the effective pure state | ↑〉a ⊗ | ↑〉b
or, in the density operator form, 1

2
(1 + σa

z) ⊗ 1
2
(1 + σb

z).
The sequence of operations leading to this state, reading
from the left to the right, is as follows,

Rb
x (π/3) − Gz − Rb

x (π/4) −
1

2J
− Rb

−y (π/4) − Gz, (5)

where Rb
x(α) = e−iασx/2 denotes a selective pulse that

rotates the spin b around the x-axis by angle α (and
Rb

−x(α) ≡ Rb
x(−α)), Gz is the pulsed field gradient along

the z-axis (it annihilates the transverse magnetizations),
and 1

2J represents just a time interval of 1/ (2J). Note
that the above pulse sequence is different from the one de-
scribed in [10] because we used a heteronuclei rather than
a homonuclei sample. The subsequent pulse sequence

Rb
x (nπ/12)− Gz − Ra

−y (π/2) − Rb
−y (π/2) (6)

generates the desired initial state

ρab (0) ≡ ρa (0) ⊗ ρb (0) = 1
2
(11 + σa

x) ⊗ 1
2
(11 + rσb

x) (7)

with purity r = cos(nπ/12); n = 0, 1, · · · , 11, which is
set by the rotation angle nπ/12 of the selective pulse
Rb

x(nπ/12).
(E2) The controlled-U operation: This operation

is implemented setting the oscillation frequency ω′
b =

ωb − πJ , so that the Hamiltonian of qubit b in the ro-
tating frame with angular frequency ω′

b can be written
as Hb(0) = (ωb − ω′

b ± πJ) Ib
z . The ± sign is deter-

mined by the state of qubit a. If qubit a is in state
| ↑〉a then Hb(0) = 0; if qubit a is in state | ↓〉a then
Hb(0) = 2πJ Ib

z . Subsequently we use the following pulse
sequence to implement the cyclic evolution,

Rb
−x (θ) −

1

2J
− Rb

−x (π − 2θ) −
1

2J
, (8)

where θ = Ω/4 is the inclination angle (see Fig.(2)).
The effect of this evolution is illustrated in Fig.(2). The
two eigenstates of ρb(0), namely |±〉b, trace out a path
which encompasses the solid angle Ω and acquire geo-
metric phases |±〉b 7→ e∓iΩ

2 |±〉b. Since the path fol-
lows geodesics, the dynamical phase disappears. Thus
the auxiliary qubit acquires the phase factor e∓iΩ

2 , i.e.
1√
2
(| ↑〉 + | ↓〉) 7→ 1√

2
(| ↑〉 + e∓iΩ

2 | ↓〉), with the probabil-

ity 1
2
(1± r). Their averaging gives the phase factor as in

Eq.(2).
(E3) Measurement: In the experiment we use a

phase sensitive detector to measure the phase γ relative
to the reference phase of the initial state |+〉a.
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FIG. 3: Summary of experimentally determined geometric
phase γ as a function of purity of the mixed state for three
different solid angles Ω. The solid lines correspond to the
theoretical result: γ = − arctan

(

r tan Ω

2

)

.

Fig. 3 shows a plot of γ versus the purity of mixed state
for the three different solid angles Ω. The experimental
data and the theoretical prediction are in a very good
agreement. The small errors are due to inhomogeneity of
magnetic field and imperfect pulses.

All experiments were conducted at room temperature
and pressure on Bruker AV-400 spectrometer. In our
experiment, all the pulses are square and are of several
microseconds duration. The spin-spin relaxation times
are 0.3s for carbon and 0.4s for proton, respectively. In
each experiment, the time used for the cyclic parallel
transport evolution is about 4.7ms, which is well within
the decoherence time.

To summarize, we have experimentally observed geo-
metric phases for mixed states which are in accordance
with the theoretical predictions. In the future, we should
be able to extend the study of geometric phases to the
non-unitary regime which is especially pertinent to their
application to fault tolerant quantum computation [11].
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