
Control Engineering Practice 9 (2001) 1079–1093

Application of velocity-based gain-scheduling to lateral auto-pilot
design for an agile missile

D.J. Leitha,*, A. Tsourdosb, B.A. Whiteb, W.E. Leitheada

aDepartment of Electronic & Electrical Engineering, University of Strathclyde, 50 George Street, Glasgow G1 1QE, UK
bDepartment of Aerospace, Power & Sensors, Cranfield University-RMCS, Swindon SN6 8LA, UK

Received 9 April 2001; accepted 9 April 2001

Abstract

In this paper a modern gain-scheduling methodology is proposed which exploits recently developed velocity-based techniques to

resolve many of the deficiencies of classical gain-scheduling approaches (restriction to near equilibrium operation, to slow rate of
variation). This is achieved while maintaining continuity with linear methods and providing an open design framework (any linear
synthesis approach may be used) which supports divide and conquer design strategies. The application of velocity-based gain-
scheduling techniques is demonstrated in application to a demanding, highly nonlinear, missile control design task. Scheduling on

instantaneous incidence (a rapidly varying quantity) is well-known to lead to considerable difficulties with classical gain-scheduling
methods. It is shown that the methods proposed here can, however, be used to successfully design an effective and robust gain-
scheduled controller. r 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Gain-scheduling control is widely employed in flight
control applications, where high performance has to be
achieved over a broad operating envelope. In the
classical gain-scheduling design approach, a nonlinear
controller is constructed by continuously interpolating,
in some manner, between the members of a family of
linear controllers (see, for example, the recent survey of
Leith & Leithead, 2000a). Each linear controller is,
typically, associated with a specific equilibrium operat-
ing point of the plant and is designed to ensure that,
locally to the equilibrium operating point, the perfor-
mance requirements are met. By employing a series
expansion linearisation which, locally to the equilibrium
operating point, has similar dynamics to the plant, linear
techniques may be used to resolve this local design task.
Continuity is, therefore, maintained with established
linear design techniques for which a considerable body
of experience has been accumulated. While this tradi-
tional gain-scheduling approach is extremely successful

in most flight control applications (McLean, 1990), the
trend is towards vehicle configurations where the
conventional gain-scheduling conditions may not always
be satisfied. Gain-scheduled controllers are traditionally
designed on the basis of the dynamics relative to a
family of trim conditions assuming that the airspeed is
slowly varying. However, during aggressive manoeuvr-
ing, the vehicle may be far from equilibrium with rapidly
varying airspeed (McLean, 1990, p. 523). In addition,
the requirement to operate at high angles of attack can
necessitate scheduling on rapidly varying quantities such
as the instantaneous incidence angle (rather than, for
example, conventional flap scheduling on averaged
incidence, McLean, 1990, p. 523). It should be noted
that scheduling on instantaneous incidence is well-
known to be problematical and is almost always avoided
in classical scheduling arrangements (see, for example,
Leith & Leithead, 2000b). Specifically, in the example
considered in this paper, a conventional gain-scheduling
design approach fails to lead to a stabilising controller.
There is, consequently, interest in the literature, towards
alternative nonlinear control design approaches such as
dynamic inversion (see, for example, Meyer, Su, &
Hunt, 1984; Tsourdos, Blumel, & White, 1998). How-
ever, in addition to the robustness issues associated with
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controllers based on inversion, owing to the substantial
body of experience which has been accumulated with
gain-scheduling methods both with regard to meeting
performance requirements and also such practical issues
as safety certification, there is a strong incentive to
retain the gain-scheduling approach.
Faced with these kind of issues (which are also

relevant in many other applications), in recent years, a
number of alternative approaches have been proposed
which attempt to extend gain-scheduling methods
including those based on local model networks and
Takagi–Sugeno fuzzy models (see, for example, Johan-
sen & Murray-Smith, 1997; Hunt & Johansen, 1997).
However, these typically include off-equilibrium infor-
mation at the cost of moving to nonlinear (especially
affine) formulations and so lose the continuity with
linear methods which is one of the principle advantages
of classical gain-scheduling. Moreover, the requirement
for some form of slow variation condition is often
retained either directly or indirectly via assumptions
implicit in the formulation (Leith & Leithead, 1999a).
Since the main source of these, and other, difficulties
ultimately lies in the well-known limitations of classical
equilibrium linearisation theory, it seems clear that the
key to further progress lies in resolving the deficiencies
of linearisation theory itself. It is precisely this issue
which is addressed by the velocity-based analysis and
design framework recently proposed in Leith and
Leithead (1998a, b). This framework subsumes classical
equilibrium linearisation theory and associates a linear
system with every operating point (both equilibrium and
off-equilibrium) of a nonlinear system, not just the
equilibrium operating points. It thereby eliminates any
restriction to near equilibrium operation while main-
taining the continuity with linear methods as required.
Moreover, it can be shown that the velocity-based
approach does not inherently involve any slow variation
requirement (Leith & Leithead, 1999b). The literature
relating to velocity-based methods is, at present, largely
theoretical in nature, being concerned with establishing
the fundamental properties of the velocity-based linear-
isation framework. The aims of the present paper are to
bring together these theoretical results within the
context of the nonlinear control design task, extend
these results to achieve a coherent, soundly based gain-
scheduling design methodology and to demonstrate the
effectiveness of the proposed methods in extending gain-
scheduling techniques to a highly nonlinear, rapidly
varying nonlinear missile system operating far from
equilibrium.
The paper is organised as follows: The control design

task is introduced in Section 2. In Section 3, the velocity-
based gain-scheduling framework is discussed and,
in Section 4, a velocity-based gain-scheduled missile
auto-pilot is designed. The results are summarised in
Section 5.

2. Control design task

The missile lateral dynamics are (White, Tsourdos, &
Blumel, 1998; Tsourdos et al., 1998):

’rr ¼
N

Iz
¼
1

2
I�1z rV0SdCn;

’vv ¼
Y

m
�Ur ¼

1

2
m�1rV0SCy �Ur;

Zy ¼ ’vvþUr; ð1Þ

where r is the yaw rate (rad/s), v the lateral velocity
(m/s), Zy the lateral acceleration (m/s2), d the fin angle
(rad). The model parameters are as follows: mass,
m ¼ 125 kg; density, q ¼ 1:0 kg/m�3; forward velocity,
V0 ¼ 1320m/s; longitudinal velocity, U ¼ 1000m/s;
reference area, S ¼ 0:0314m2; reference diameter,
d ¼ 0:2m; inertia, Iz ¼ 67:5 kgm2. It is assumed that
forward velocity is constant, that the longitudinal
velocity is sufficiently large compared to the lateral
velocity, that the total incidence angle may be accurately
approximated by v=V0 and that the roll angle is zero
(skid-to-turn operation). Under these conditions, the
aerodynamic coefficients Cn and Cy corresponding to a
Mach number of 4 are described by

Cn ¼
1

2
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þ ðSfV0Cydsjvj þ SfV0Cyd0Þd;

Cy ¼ ðCyv0 þ CyvsjvjÞvþ ðV0Cyd0 þ V0CydsjvjÞd; ð2Þ

where

Cnrs ¼ 8:6856; Cnr0 ¼ �616:4706; Cyvs ¼ �2:6057;

Cyv0 ¼ �21:1176; Cyds ¼ 0:0869; Cyd0 ¼ �16:2118

Xcp0 ¼ 0:1382; Xcps ¼ 0:0087; Sf ¼ �5:25: ð3Þ

The fin actuator, A; is modelled by linear dynamics
with transfer function

AðsÞ ¼
360000

s2 þ 600sþ 360000
: ð4Þ

The requirement is to achieve a nominal closed-loop
acceleration response with rise time of less than 0.1 s and
less that 20% overshoot. This requirement is to be
satisfied over the whole operating envelope of 750 g.
Whilst this is, of course, not a complete performance
specification, it is adequate for the present study (in
particular, since consideration focuses on catering for
the nonlinear aerodynamics, a simple actuator repre-
sentation is employed and issues relating to measure-
ment noise are not considered).
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The control design task for the agile missile is a
demanding one owing to the strongly nonlinear nature
of the dynamics, the large operating envelope with a
requirement for rapid, aggressive manoeuvring, and the
fast rise time specification (corresponding, in linear
terms, to a bandwidth around twice that of the
unaugmented system). The conventional approach is
to adopt a gain-scheduling design methodology. The
classical gain-scheduling design approach requires
appropriate linearisations of the dynamics which
approximate, locally to specific equilibrium flight
conditions, the nonlinear dynamic behaviour of the
missile. Let the equilibrium operating points be para-
meterised by p: The nonlinear dynamics of the missile
(1) may then be approximated, locally to the specific
equilibrium operating point po; by the series expansion
linearisation,

D’rr ¼ NrðpoÞDrþNvðpoÞDvþNdðpoÞDd;

D’vv ¼ �U0Drþ YvðpoÞDvþ YdðpoÞDd; ð5Þ

DZy ¼ YvðpoÞDvþ YdðpoÞDd; ð6Þ

together with the input, output and state transforma-
tions,

Dd ¼ d� d0; r ¼ r0 þ Dr;

v ¼ v0 þ Dv; Zy ¼ Zy0 þ DZy; ð7Þ

where d0; r0; v0 and Zy0 are, respectively, the values of d;
r; v and Zy at the equilibrium operating point po and
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Differentiating, (5) may be reformulated as

D.vv� YvðpoÞD’vvþU0NvðpoÞDvþU0NrðpoÞDr

¼ �U0NdðpoÞDdþ YdðpoÞD’dd; ð9Þ

which, following standard flight control practices and
neglecting the direct coupling terms Yd may for control
design purposes be simplified to

D.vv� YvðpoÞD’vvþU0NvðpoÞDvþU0NrðpoÞDr

¼ �U0NdðpoÞDd; ð10Þ

which is valid locally to the specific equilibrium
operating point po: Hence, the linearised plant dynamics
at the equilibrium operating point po are described by
(10) and (6) together with the input, output and state
transformations (7). It should be noted that, whilst the
input, output and state transformations (7) are different
at every equilibrium operating point, the linearised

dynamics, (10) and (6), are the same at equilibrium
operating points for which p equals po: Hence, (10)
and (6) define a linear dynamic family parameterised
by p:
For each member of the linear family, (10) and (6), a

linear controller is designed to meet the performance
specification. A conventional cascaded inner–outer loop
controller configuration is employed with a lateral
velocity inner loop and an acceleration outer loop.
The inner loop is designed to have sufficiently high
bandwidth compared to the outer loop that the design of
the two loops can be effectively de-coupled. Since the
controllers are designed on the basis of the linearisation
of the missile dynamics at trim flight conditions, the
linear controllers act on perturbed quantities. Adopting
what is perhaps the most widespread approach to
constructing a nonlinear controller realisation, the
scheduling variable is simply substituted into the linear
controller family; that is, the gains of the controller
are varied according to a suitable quantity which
parameterises the equilibrium points (in the present
example, lateral velocity is a natural choice) (see, for
example, McLean, 1990, p. 298; Nichols, Reichert, &
Rugh, 1993; Blakelock, 1996) whilst relying on the
feedback action to accommodate the input, output
and state transformations. It should be noted that
although the series expansion linearisations of the
plant are employed in the design procedure, the
corresponding local controller designs are frozen-sche-
duling variable linearisations of the resulting nonlinear
controller.
This gain-scheduling approach is based on the

assumptions that the system remains sufficiently near
to equilibrium that the equilibrium linearisations are
valid and that the rate of variation of the system from
the vicinity of one equilibrium point to another is
sufficiently slow. These assumptions are clearly not met
in the present example (nor, indeed, in many realistic
flight control applications). Whilst the controller is
designed on the basis of the missile dynamics relative to
trim conditions, the missile motion is not confined to
small perturbations about trim but rather involves
aggressive manoeuvring which takes the missile far
from equilibrium. In addition, the scheduling variable,
lateral velocity, is not a priori slowly varying relative to
the dynamics of the controller; either with respect
to the dynamics of the acceleration outer loop
controller or the lateral velocity inner controller. These
traditional gain-scheduling conditions are, however,
conservative in nature. By nonlinear analysis of the
resulting closed-loop system, the classical gain-schedul-
ing approach (including the foregoing, on the face
of it rather ad hoc, implementation technique) may
lead to a soundly based controller design which is
globally valid (not restricted to near equilibrium
operation) provided that appropriate conditions are
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satisfied (Leith & Leithead, 2000b). Namely, it is
required that the aerodynamic moment and force are
linear with respect to lateral velocity and fin angle and
that qN=qv; qN=qr; qN=qd; qY=qv and qY=qd do not
depend on the lateral velocity, v; or the fin angle, d;
that is,

N ¼
qN
qv

ðpÞvþ
qN
qr

ðpÞrþ
qN
qd

ðpÞd;

Y ¼
qY
qv

ðpÞvþ
qY
qd

ðpÞd; ð11Þ

where the quantity, p; does not depend on the lateral
velocity and fin angle. Also, it is required that the
equilibrium operating points of the missile are para-
meterised by p and that the rate of variation of p is
sufficiently slow that the nonlinear controller dynamics
are insensitive to the choice of controller realisation.
Evidently, the first two conditions are not satisfied in the
present example and the third condition is unlikely to be
satisfied owing to the rapid variation of the system. As
might be expected, the gain-scheduled controller fails to
achieve the performance specification even for relatively
small acceleration demands (compared to the operating
envelope of 750g) and, indeed, appears to de-stabilise
the closed-loop system (the missile response, obtained
using nonlinear simulations, to a step demand of
100m/s2, roughly 10g, in lateral acceleration is shown
in Fig. 1).
Of course, the conventional gain-scheduling approach

followed in the preceding discussion does not uniquely
define the nonlinear controller. State-space representa-
tions of a linear controller which are related by a
nonsingular linear state transformation are linearly
equivalent; that is, they have the same transfer

functions. Hence, each member of the family of linear
controllers designed has infinitely many state-space
representations. The selection of an appropriate gain-
scheduling controller realisation is considered by Lawr-
ence and Rugh (1995) and Leith and Leithead (1998c).
The utility of the former approach is, however, some-
what limited in general (Leith & Leithead, 1998d,
1999c). In the latter approach, a controller realisation
is sought which leads to the weakest slow variation
requirement within the context of conventional gain-
scheduling, that is, on the basis of the plant dynamics
relative to the equilibrium operating points. However,
the slow variation requirement can, in general, be
further weakened by exploiting knowledge of the plant
dynamics at nonequilibrium operating points (Leith &
Leithead, 1998d). In the present example, the controller
realisation is inadequate despite satisfying both the
conditions proposed by Lawrence and Rugh (1995) and
those considered by Leith and Leithead (1998c).
The requirement to design a gain-scheduled controller

which achieves the performance specification remains to
be achieved.

3. Velocity-based gain-scheduling framework

The velocity-based analysis and design framework,
proposed recently in Leith and Leithead (1998b-d),
associates a linearisation with every operating point of a
nonlinear system, not just the equilibrium operating
points. The approach thereby relaxes the restriction to
near equilibrium operation whilst maintaining the
continuity with linear methods which is a principle
advantage of conventional gain-scheduling. Moreover,
the velocity-based approach does not inherently involve
a slow variation requirement. It therefore provides an
appropriate framework within which to investigate the
design of a gain-scheduled controller for the missile
considered here.
Consider the nonlinear system

’xx ¼ Fðx; rÞ; y ¼ Gðx; rÞ; ð12Þ

which may be reformulated, without loss of generality,
as

’xx ¼ Axþ Brþ fðrÞ; y ¼ CxþDrþ gðrÞ; ð13Þ

where xARn; rARm and A; B; C; D are appropriately
dimensioned constant matrices, f(K) and g(K) are
nonlinear functions and rðx; rÞARq; qpmþ n; embodies
the nonlinear dependence of the dynamics on the state
and input with rxr; rrr constant. Trivially, this
reformulation can always be achieved by letting r ¼
½xT rT	T; in which case q ¼ mþ n: However, the non-
linearity of the system is frequently dependent on only a
subset of the states and inputs, in which case the
dimension, q; of r is less than mþ n: It is emphasised

Fig. 1. Response of the closed-loop system to an acceleration step

demand of 100m/s2 with the classical gain-scheduled controller.
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that this scheduling variable, r; is quite distinct from the
quantity, p; employed in classical gain-scheduling
approaches. While p is only required to parameterise
the equilibrium points of a system, r directly embodies
the global nonlinear dependence of the dynamics. Of
course, the class of systems, denoted extended local
linear equivalence (ELLE) systems, for which a one-to-
one correspondence exists between r and the locus of
equilibrium points is of particular importance with
regard to classical gain-scheduling techniques, see Leith
and Leithead (1998b, c). Differentiating (13), an alter-
native representation of the nonlinear system is

’xx ¼ w; ð14Þ

’ww ¼ AðrÞwþ BðrÞ’rr; ð15Þ

’yy ¼ CðrÞwþDðrÞ’rr; ð16Þ

where

AðrÞ ¼ AþrfðrÞrxr; BðrÞ ¼ BþrfðrÞrrr;

CðrÞ ¼ CþrgðrÞrxr; DðrÞ ¼ DþrgðrÞrrr: ð17Þ

Dynamically, (14)–(16), with appropriate initial condi-
tions, and (13) are equivalent (have the same solution,
x). When w ¼ Axþ Brþ fðrÞ; y ¼ CxþDrþ gðrÞ is
invertible so that x may be expressed as a function of w;
r and y; then the transformation relating (14)–(16) to
(13) is algebraic. The relationship between (14)–(16) and
(13) is evidently direct. Moreover, the directness of the
relationship extends rather more deeply than might
initially be expected. Consider the linear system,
obtained by ‘‘freezing’’ (14)–(16) at the operating point,
ðx1; r1Þ;

’#xx#xx ¼ #ww; ð18Þ

’#ww#ww ¼ Aðr1Þ #wwþ Bðr1Þ’rr; ð19Þ

’#yy#yy ¼ Cðr1Þ #wwþDðr1Þ’rr; ð20Þ

where r1 ¼rðx1; r1Þ: System (18)–(20) is referred to as
the velocity-based linearisation of (13) associated with
the operating point ðx1; r1Þ: It may be shown that the
solutions to the linear system (18)–(20) are an accurate
approximation to the solutions of the nonlinear system,
(13), locally to the operating point ðx1; r1Þ: Furthermore,
while the solution to an individual velocity-based
linearisation is only a locally accurate approximate,
there exists a velocity-based linearisation, (18)–(20), for
every operating point ðx; rÞ and thus a velocity-based
linearisation family, with members defined by (18)–(20),
can be associated with the nonlinear system, (13). The
solutions to the members of the family of velocity-based
linearisations may be pieced together to approximate the
global solution to the nonlinear system (13) to an
arbitrary degree of accuracy (Leith & Leithead, 1998a).
It is emphasised that, unlike conventional series expan-

sion linearisation approaches, no restriction to near
equilibrium operation is involved.
With regard to controller design, the velocity-based

linearisation of the feedback combination of a plant and
controller is simply the feedback combination of the
velocity-based linearisations of the plant and controller
(Leith & Leithead, 1998c). The following velocity-based
gain-scheduling design procedure is, therefore, sug-
gested (Leith & Leithead, 1998b):

1. Determine the velocity-based linearisation family
associated with the nonlinear plant dynamics.

2. Based on the velocity-based linearisation family of
the plant, determine the required velocity-based
linearisation family of the controller such that the
resulting closed-loop family achieves the performance
requirements. Since each member of the plant family
is linear, conventional linear design methods can be
utilised to design each corresponding member of the
controller family.

3. Implement a nonlinear controller with the velocity-
based linearisation family designed at step 2. This
step is discussed in detail in Leith and Leithead
(1998b, c). When the controller contains integral
action, the controller velocity-based linearisation
family may be implemented directly.

This design procedure retains a divide and conquer
approach and maintains the continuity with linear
design methods which is an important feature of the
conventional gain-scheduling approach. However, in
contrast to the conventional gain-scheduling approach,
the resulting nonlinear controller is valid throughout the
operating envelope of the plant, not just in the vicinity
of the equilibrium operating points. This extension is a
direct consequence of employing the velocity-based
linearisation framework rather than the conventional
series expansion linearisation about an equilibrium
operating point.
Since there are a continuum of operating points, the

velocity-based linearisation family associated with a
nonlinear system has infinitely many members. It should
be noted that a similar issue also arises in classical gain-
scheduling approaches since there are, in general, a
continuum of equilibrium points and so infinitely many
equilibrium linearisations. Although a direct controller
design based on the analytic formulation of the plant
dynamics might be constructed in step 2 above, in
traditional gain-scheduling approaches it is more usual
to design controllers for a small number of representa-
tive equilibrium points and interpolate between the
resulting point designs to obtain a fully populated
controller family. A similar approach is also attractive
within the velocity-based gain-scheduling framework,
but with consideration extended to include off-equili-
brium operating points in addition to equilibrium
points. The requirement, not addressed in the existing
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literature, is to modify the above velocity-based design
procedure to one based on a small number of operating
points, that is, to an exact analogy of classical gain-
scheduling. It is addressed by bringing together the
results in Leith and Leithead (1999a, b) as developed
below.
A key issue in any approach based on a small number

of operating points is the choice of interpolation
strategy. Traditional gain-scheduling approaches typi-
cally place emphasis on interpolating control designs
with little reference to the plant characteristics with the
result that the interpolation approach often appears
rather arbitrary. Within the velocity-based framework a
more soundly based approach is suggested. Since the
control design is based on the velocity-based linearisa-
tion of the plant, the natural requirement is to determine
a (perhaps approximate) finite parameterisation of the
plant family on which to base gain-scheduled control
designs. This requirement leads to consideration of a
blended multiple model representation of the plant
linearisation family whereby the linearisations at a small
number of representative operating points are blended
together/interpolated between to produce an approx-
imation to the exact linearisation family (Leith &
Leithead, 1999a). Letting fðxj ; rjÞg denote the centre
operating points upon which the blended family is
based, the corresponding representation of the plant
linearisation family is

’*xx*xx ¼ *ww;

’*ww*ww ¼
X
j

A jmjð *rrÞ

 !
*wwþ

X
j

B jmjð *rrÞ

 !
’rr; ð21Þ

’*yy*yy ¼
X
j

C jmjð *rrÞ
j

 !
*wwþ

X
j

D jmjð *rrÞ

 !
’rr;

*rr ¼ rxr *xxþrrrr;

with A j ¼ AðrjÞ;B
j ¼ BðrjÞ;C

j ¼ CðrjÞ;D
j ¼ DðrjÞ:

Provided mjðrjÞ is unity and mkðrjÞ; kaj; is zero, the
frozen form of the blended multiple model system at the
operating point ( *xxj ;rj) is precisely the velocity-based
linearisation of the plant at ( *xxj ;rj). At any other
operating point, say at ( *xx1;r1), (21) is the approximation
to the velocity-based linearisation, (14)–(16), obtained
by interpolating, by means of the validity functions
mjðr1Þ; between the velocity-based linearisations at the
operating points, ( *xxj ;rj). Provided (21) is a sufficiently
accurate approximation to the exact plant family and/or
the controller is sufficiently robust, a controller which
achieves the performance objectives with these approx-
imate dynamics is also guaranteed to achieve satisfac-
tory performance when used with the exact plant
dynamics (14)–(16). The blended representation, (21),
of the plant linearisation family thus leads directly to a

divide and conquer control design approach whereby a
linear controller is designed for the plant linearisation
associated with each of the operating points in fðxj ; rjÞg:
These control designs are then interpolated, using the
same weighting functions mj as the plant, to obtain the
complete velocity-based linearisation family of the
controller (Leith & Leithead, 1999a). Note that, similar
to classical gain-scheduling, control designs are only
required for the small number of centre operating points
fðxj ; rjÞg: However, in contrast to classical approaches,
the interpolating scheme adopted is explicitly selected to
capture the plant dynamics. The blended representation
(21) is closely related to neuro-fuzzy modelling ap-
proaches including local model networks and Takagi–
Sugeno fuzzy methods. However, in contrast to these
methods, the velocity-based representation:

* Blends genuinely linear (not affine) models.
* The dynamics are directly related to the centre

models: the solution to a velocity-based blended
multiple model system, locally to a specific operating
point, is described by the solution to the linear system
obtained by ‘‘freezing’’ the blended multiple model
system at the relevant operating point. The resulting
frozen system is simply a weighted linear combina-
tion of the centre models. This holds for both plant
and controller and provides the theoretical justifica-
tion for using identical weighting functions in both
families.

* A still stronger property is that the solution to the
blended multiple model system, locally to a specific
operating point, is under suitable conditions approxi-
mated by the weighted linear combination of the
solutions to the centre models (Leith & Leithead,
1999a). It follows, for example, that when the centre
models exhibit uniform step responses, this will also
hold globally.

It is the close relationship thereby guaranteed between
the properties of the linearisations at the centre
operating points and those at intervening operating
points that provides a sound basis for the proposed
divide and conquer design approach.
In addition to the choice of interpolation strategy, a

second key issue is to ensure that the members of the
controller family are, in an appropriate sense, compa-
tible with one another. Again, a similar issue arises in
classical gain-scheduling approaches. However, the
theoretical understanding of this area is very poorly
developed within the classical framework. In many
applications the requirement is for approximately uni-
form performance across the operating envelope. Con-
sider, therefore, selecting the controller velocity-based
linearisations such that at every operating point the
closed-loop combination of the plant and controller
linearisations has, approximately, the same transfer
function. The open-loop linearisation family then has
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a similar transfer function at every operating point. This
is, however, not sufficient to ensure that the controller
achieves uniform performance across the operating
envelope; that is, approximately, inverts the plant
dynamics. The transfer function only specifies the
realisation of a linearisation to within a linear state
transformation. It is, therefore, also necessary to ensure
that the state-space realisations of the members of the
controller linearisation family are suitably compatible
with one another. When the rate of variation of a
nonlinear system is sufficiently slow, it can be shown
that the controller becomes insensitive to the choice of
realisation (Leith & Leithead, 2000b). However, in
general, it is straightforward to confirm the closed-loop
dynamics may be extremely sensitive to the choice of
realisation. The issue of an appropriate choice of
controller realisation (equivalently, an appropriate
choice of state co-ordinates for each member of the
controller linearisation family) remains to be fully
addressed by current theory. However, relevant results
do exist for the class of approximate (but arbitrarily
accurate) inverting controllers (Leith & Leithead,
1999b). Specifically, consider approximating the velo-
city-based plant dynamics (14)–(16) by

’xx ¼ w; ð22Þ

’ww ¼ AðrÞwþ BðrÞ’rr; ð23Þ

’yy ¼ #CCðrÞwþ #DDðrÞ’rr; ð24Þ

with #CCðrÞ ¼ CðrÞ þ eC; #DDðrÞ ¼ ed ; eC; ed ; are constants
with ed nonsingular (for simplicity, it is assumed,
without loss of generality, that DðrÞ is zero). A
realisation of the velocity-based inverse of (22)–(24) is

’wwinv ¼ AinvðrÞwinv þ BinvðrÞ’zz;

’rr ¼ CinvðrÞwinv þDinvðrÞ’zz; ð25Þ

where

AinvðrÞ ¼ AðrÞ � BðrÞ #DD
�1
ðrÞ #CCðrÞ;

BinvðrÞ ¼ �BðrÞ #DD
�1
ðrÞ;

CinvðrÞ ¼ #DD
�1
ðrÞ #CCðrÞ;

DinvðrÞ ¼ #DD
�1
ðrÞ: ð26Þ

The controller (25) is an exact inverse of (22)–(24) but
an approximate inverse of the original system (14)–(16).
In particular, the cascade combination of (14)–(16) and
(25) leads to the dynamics:

’zz

’wwinv

" #
¼

AðvÞ 0

0 AinvðvÞ

" #
z

winv

" #
þ

0

BinvðvÞ

" #
’zz; ð27Þ

’yy ¼ ½ #CCðvÞ � #CCðvÞ 	
z

winv

" #
; ð28Þ

where z ¼ wþ winv: Stability of the cascade combination
requires that the inverse system is bounded-input
bounded-output stable (ensuring that the unobservable
winv dynamics, corresponding to the zero dynamics of
(22)–(24), are stable) and that the uncontrollable sub-
system in (27) involving the state, z; is asymptotically
stable. It can then be shown (Leith & Leithead, 1999b)
that under appropriate conditions, limeC;ed-0

#CCðvÞwinv ¼
�’zz; and that the approximate inverse (25) can therefore
be made arbitrarily accurate with respect to the original
system (14)–(16). The values of ed and eC used, while
deriving the approximate inverse, are design parameters
which determine the accuracy of the inversion achieved.
Analogously, to linear pole-zero inversion of systems
with relative degree greater than zero, the approximate
inverse contains high frequency poles (more precisely,
the VB linearisation contains high frequency poles) to
ensure that it is realisable. Roughly speaking, ed
determines the frequency of the poles and eC influences
the damping with the inversion error tending to zero as
ed and eC tend to zero. Certain aspects of the plant
dynamics, such as sharp resonances, may cause the
inverting controller to be sensitive to plant uncertainty.
Hence, more generally, the type of approximation (22)–
(24) employed may be modified to improve robustness
by ameliorating any such aspects of the plant dynamics,
albeit at the cost of inexact inversion of the original
dynamics. When such an approach is adopted, the
inversion theory is, in effect, being used to determine an
appropriate controller realisation rather than to invert
the system per se. The inverting controller obtained
should be augmented by a pre-compensating fixed
controller as required to meet the design requirements
and including roll-off at high frequencies of the overall
controller gain. When applied in the context of a
blended representation, (21), of the plant, the inversion
procedure resolves the issue of ensuring that the
members of the controller family are compatible with
one another. The inverting controller for the nonlinear
plant is obtained by designing an inverting controller for
the plant linearisation associated with each of the
operating points in fðxj ; rjÞg and blending these linear
designs together as in (21). It is worthwhile noting that,
provided the output equation of the plant is linear so
that the C j and D j are all the same, the resulting
nonlinear controller is

’*ww*ww
inv

¼
X
j

mjð *rrÞðAj � Bj #DD
�1 #CCÞ *wwinv �

X
j

mjð *rrÞBj #DD
�1 ’zz;

’rr ¼ #DD
�1 #CC *ww

inv
þ #DD

�1 ’zz; ð29Þ

which is identical to the inverting controller obtained by
applying (25) and (26) to (21).
To summarise, the analogy to classical gain-schedul-

ing within the velocity-based framework consists of the
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foregoing design procedure with steps 1 and 2 modified
as follows.

(1) Determine an appropriate velocity-based blended
model for the nonlinear system. The blended
model consists of a small number of velocity-
based linearisations together with the interpolation
functions to represent all the dynamics both on
and off equilibrium.

(2a) Modify the velocity-based blended model as
required to ensure invertibility, to reduce sensitiv-
ity to plant uncertainty and to reduce complexity.

(2b) Invert each velocity-based linearisation and blend
together using the same interpolating functions as
in (1).

The resulting controller is globally valid and involves
no slow variation requirement.

4. Velocity-based gain-scheduled missile auto-pilot

Differentiating, the missile dynamics (1) may be
reformulated in the velocity-based form:

’ww ¼ AðrÞwþ BðrÞ’dd;
’vv

’ZZy

" #
¼ CðrÞwþDðrÞ’dd; ð30Þ

where

w ¼
’rr

’vv

" #
; AðrÞ ¼

1

Iz

qN
qr

ðv; r; dÞ
1

Iz

qN
qv

ðv; r; dÞ

�U
1

m

qY
qv

ðv; dÞ

2
6664

3
7775;

BðrÞ ¼

1

Iz

qN
qd

ðv; r; dÞ

1

m

qY
qd

ðv; dÞ

2
6664

3
7775; CðrÞ ¼

0 1

0
1

m

qY
qv

ðv; dÞ

2
64

3
75;

DðrÞ ¼
0

1

m

qY
qd

ðv; dÞ

2
64

3
75: ð31Þ

The velocity-based linearisation associated with an
operating point is obtained by simply ‘‘freezing’’ (30) at
the relevant operating point and the collection of such
linearisations forms the velocity-based linearisation
family. It can be seen, by inspection, that the scheduling
variable, r, associated with this system is ½v r d	T: Note
that that while v; r; and d are related at equilibrium
operating points, this is not the case at nonequilibrium
operating points; that is, v0 and r0 are functions of d; but
v and r in general are not functions of d and so
every triple ðv; r; dÞ does not correspond to a triple

ðv0ðdÞ; r0ðdÞ; dÞ: Hence, the velocity-based linearisation
family contains members which do not correspond to
any of those of the equilibrium linearisation family (and
so which are not captured by any classical gain-
scheduling approach).
An inner/outer loop type of structure is adopted with

a lateral velocity inner loop designed first and then
enclosed within an acceleration outer loop.1 The inner
loop is designed to have sufficiently higher bandwidth
than the outer loop so that the design of the two loops
can be effectively de-coupled. One immediate advantage
of this approach is that the dynamics from fin angle to
lateral velocity are minimum-phase (unlike the dynamics
from fin to lateral acceleration which are non-minimum-
phase and so would hinder the control design). The
specification and target loop dynamics remain the same
as those for the conventional gain-scheduled controller
discussed in Section 2.

4.1. Inner-loop design

For control design (but not analysis) purposes, the
lateral velocity dynamics of the plant are approximated
by the blended representation

’#ww#ww ¼ #AAðvÞ #wwþ #BBðvÞ’#dd#dd; #wwv ¼ #CC #wwþ #DD
’#dd#dd; ð32Þ

with

#AAðvÞ ¼
X5
j¼1

mjðjvjÞAj ; #BBðvÞ ¼
X5
j¼1

mjðjvjÞBj ;

#CC ¼ eC 1
� �

; #DD ¼ ed ; ð33Þ

where

#ww ¼
#wwr

#wwv

" #
;

A1 ¼ A

0

0

0

2
64
3
75

0
B@

1
CA ¼

�3:38 0:62

�1000 �3:24

" #
;

A2 ¼ A

10

0

0

2
64

3
75

0
B@

1
CA ¼

�2:85 5:70

�1000 �11:88

" #
;

A3 ¼ A

20

0

0

2
64

3
75

0
B@

1
CA ¼

�2:32 15:37

�1000 �20:52

" #
;

1 In practice, the inner loop would be augmented with feedforward

from the acceleration demand but this is not omitted here in order to

focus on the capability of the design method to compensate for the

aerodynamic nonlinearity.
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A4 ¼ A

40

0

0

2
64

3
75

0
B@

1
CA ¼

�1:25 48:47

�1000 �37:79

" #
;

A5 ¼ A

60

0

0

2
64

3
75

0
B@

1
CA ¼

�0:18 99:92

�1000 �55:07

" #
;

B1 ¼ B

0

0

0

2
64
3
75

0
B@

1
CA ¼

5502:8

�2830:0

" #
;

B2 ¼ B

10

0

0

2
64

3
75

0
B@

1
CA ¼

5166:8

�2657:2

" #
;

B3 ¼ B

20

0

0

2
64

3
75

0
B@

1
CA ¼

4830:8

�2484:4

" #
;

B4 ¼ B

40

0

0

2
64

3
75

0
B@

1
CA ¼

4158:8

�2138:8

" #
;

B5 ¼ B

60

0

0

2
64

3
75

0
B@

1
CA ¼

3486:8

�1793:2

" #
: ð34Þ

Note, only the first centre operating point is an
equilibrium point. This blended/interpolated representa-
tion involves three main modifications for control
purposes: (i) the inclusion of perturbation terms eC
and ed to ensure a realisable velocity-based inverse, (ii)
the coefficients in (30) which depend on yaw rate, r; and
fin angle, d; are neglected (so that the coefficients in (32)
vary only with lateral velocity, v) and (iii) the actuator
dynamics are neglected by assuming that the input #dd to
the actuator is identical to the actual fin angle d (to
avoid unnecessary inversion of the actuator dynamics by
the controller). Values of 5 and 0.2 for, respectively, eC
and ed are found to lead to an inverse which achieves an
adequate degree of accuracy. With regard to the
blending, for simplicity, standard triangular member-
ship functions, mj ; centred on lateral velocities of 0, 10,
20, 40 and 60m/s are used with overlap occurring only
between the weighting functions associated with neigh-
bouring centres. This scheme corresponds to straightfor-
ward linear interpolation between the local models.
Despite the very strongly nonlinear nature of the
dynamics, only five local models are sufficient to capture

the dynamics through the entire operating envelope up
to around 760g. (The accuracy of the approximation
can be assessed by comparing the transfer functions of
the linearisations associated with (30) and (32) over a
range of operating points. However, the plots are
omitted here owing to space considerations.) This choice
of centres, while effective, is not optimised and,
consequently, the use of fewer models might be feasible.
An appropriate realisation of the velocity-based

inverse of (32) (an approximate inverse of the actual
plant dynamics, (30)) is

’wwinv ¼ AinvðvÞwinv þ BinvðvÞ’zz;
’#dd#dd ¼ Cinvwinv þDinv ’zz; ð35Þ

where

AinvðvÞ ¼
X5
j¼1

mjðjvjÞðAj � Bj #DD
�1 #CCÞ;

BinvðvÞ ¼ �
X5
j¼1

mjðjvjÞBj #DD
�1
;

Cinv ¼ #DD
�1 #CC;

Dinv ¼ #DD
�1
:

Note that #CC; #DD are constant so that (35) is an exact
inverse for (32). The nonlinear controller dynamics, (35),
are augmented by the linear controller, Ci; consisting
simply of integral action. The gain, Ki; of the integrator
is selected such that the inner loop cross-over frequency
is around 130 rad/s. The architecture of the overall
inner-loop controller design is shown in Fig. 2a; the
uniform cross-over frequency of the resulting open-loop
dynamics is clearly evident from Fig. 3. The velocity-
based formulation (35) of the nonlinear controller
dynamics cannot be directly implemented owing to the
derivative action at the input (see Fig. 2a). However,
owing to the integral action in the linear element of the
controller dynamics, Ci; the controller structure in
Fig. 2a may be equivalently reformulated as in Fig. 2b.
The realisation in Fig. 2b is now in a form suitable for
implementation. Note that a direct link is maintained
between the gains in the controller implementation and
the gains in the original (nonimplementable) velocity-
based formulation.

4.2. Outer-loop design

In velocity-based form, the lateral acceleration is
related to lateral velocity and fin angle by

’ZZy ¼
1

m

qY
qv

ðv; dÞwv þ
1

m

qY
qd

ðv; dÞ’dd; ð36Þ

with wv ¼ ’vv: Owing to the relatively high bandwidth of
the inner loop, the lateral velocity may (for design, but
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not analysis, purposes), be considered effectively equal
to the lateral velocity demand input to the inner-loop
controller. Following standard flight control practice to
modify the dynamics by neglecting the direct coupling
term in (36) (with which the nonminimum phase
dynamics are associated), the gain relating velocity to
acceleration is approximately 1=m

� �
qY=qv
� �

ðv; dÞ: How-
ever, in addition to the expected gain mismatch at fast
time-scales (high frequencies) due to neglecting the
nonminimum phase zero in this approximation, there is
also a mismatch in gain at long time-scales (low
frequencies) when the direct coupling term is neglected:
the mismatch at low frequency can be observed in the
Bode plots for the velocity-based linearisations shown in

Fig. 4. Considering this effect in more detail, let P and
PC denote, respectively, the velocity-based plant and
inner-loop dynamic operators defined by

wv ¼ P’dd; wv ¼ PC ’vvd : ð37Þ

It follows that

’ZZy ¼
1

m

qY
qv

ðv; dÞ þ
1

m

qY
qd

ðv; dÞP�1
� �

PC ’vvd : ð38Þ

Since the bandwidth of both P and PC are considerably
greater than the required bandwidth of the outer-loop,
in (38) P and PC may be approximated by their steady-
state gains yielding

’ZZyE
1

m

qY
qv

ðv; dÞ �
1

m

qY
qd

ðv; dÞ

0
B@

�

U

Iz

qN
qv

ðv; dÞ þ
1

Izm

qN
qr

ðv; dÞ
qY
qv

ðv; dÞ

U

Iz

qN
qd

ðv; dÞ þ
1

Izm

qN
qr

ðv; dÞ
qY
qd

ðv; dÞ

1
CCA’vvd : ð39Þ

Hence, for control design purposes the dynamics
relating velocity demand to lateral acceleration are
approximated by the blended representation:

’ZZyE
X7
j¼1

mjðjvjÞgj

 !
wv ð40Þ

with g1 ¼ �2:91; g2 ¼ �6:19; g3 ¼ �8:89; g4 ¼ �12:51;
g5 ¼ �12:81; g6 ¼ �9:41; g7 ¼ �3:69 and triangular
weighting functions, mj centred on lateral velocities of
0, 5, 10, 20, 40, 50 and 60m/s. Since the dependence of
the aerodynamic derivatives on fin angle, d; is weak, it is
neglected in (40) to simplify the scheduling arrange-
ments. An outer-loop controller possessing the structure

Fig. 3. Transfer functions of open-loop velocity-based linearisations

of inner loop at lateral velocities of 0, 20 and 50m/s (corresponding

roughly to lateral accelerations of 0, 20 and 50g).

Fig. 2. Alternative formulations of inner-loop controller.
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shown in Fig. 5a is therefore adopted, with nonlinear
control gain gnl satisfying

gnlðvÞ ¼
X7
j¼1

mjðjvjÞg
�1
j

 !
: ð41Þ

The nonlinear gain, gnl; is augmented with linear
controller dynamics consisting of integral action com-

bined with a low-pass filter, C0; with transfer function,
1/(0.02s+1), for enhanced roll-off at high frequencies.
The gain, K0; of the integrator is selected such that the
outer-loop bandwidth is around 20 rad/s. Bode plots of
the transfer functions of the velocity-based linearisations
of the open outer-loop system are shown in Fig. 6. (It
should be noted that these plots are for the exact system,
including the dynamics of the inner control loop and

Fig. 4. Comparison of exact plant dynamics (relating acceleration to inner loop demand, vd) and nonminimum phase approximation.

Fig. 5. Alternative formulations of outer-loop controller.
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with acceleration dynamics (36), rather than for the
approximate system, neglecting the inner-loop dynamics
and with acceleration dynamics (40), used for outer-loop
control design purposes.) The velocity-based outer-loop
controller realisation in Fig. 5a is not implementable
owing to the derivative action. However, as discussed
previously for the inner-loop controller, owing to the
presence of integral action the outer-loop controller can
be equivalently reformulated as the implementable form
shown in Fig. 5b.

4.3. Assessment of robust performance and stability

Typical acceleration step responses with the velocity-
based gain-scheduled controller are shown in Fig. 7. It
can be seen that, in contrast to the previous classical
gain-scheduled control design, the performance require-

ments are indeed satisfied, under nominal conditions,
over the full operating envelope (750g). While perfor-
mance under nominal conditions is necessary it is not, of
course, sufficient. The requirement is to achieve robust
stability and performance. This is particularly important
in the guided weapons context where the dynamics are
subject to very considerable uncertainty and a wide
range of operating environments must be tolerated. In
particular, a significant component of the uncertainty in
flight vehicles is often highly structured in nature and, in
the present application, the primary requirement is for
robustness with respect to variations in the missile
aerodynamic parameters. Methods for analysing the
robustness of linear systems to parametric uncertainty
have been the subject of a great deal of research in recent
years and are relatively well developed. In contrast, the
parametric robustness analysis of nonlinear, and in
particular gain-scheduled controllers have received al-
most no attention and remain immature. However, by
exploiting the continuity with linear methods which is
provided by the velocity-based framework, the wealth of
linear analysis methods can be brought to bear directly
on nonlinear systems.
A linear system is said to be G-stable when the zeros

of its characteristic polynomial lie inside a region G of
the complex left-hand plane (Ackermann, 1994). When
G coincides with the open left half-plane, then G-
stability is equivalent to conventional Hurwitz stability.
Applying the Kharitonov’s theorem (see, for example,
Weinmann, 1991), it can be shown that the members of
the velocity-based linearisation family of the closed-loop
missile system are stable for rather large variations in
the missile aerodynamic parameters. Specifically, under
worst case conditions the closed-loop linearisations are
guaranteed Hurwitz stable over the range of parameters
corresponding to simultaneous variations of 720% in
Cyz0; Cyzs and V0; 780% in Cyv0; Cyvs; Xcp0 and Xcps;
and 760% in Cnr0 and Cnrs: Fig. 8 shows the worst case
stability test results. The foregoing results relate to

Fig. 6. Transfer functions of open-loop velocity-based linearisations

of outer loop at lateral velocities of 0, 20 and 50m/s (corresponding

roughly to 0, 20 and 50g).

Fig. 7. Step responses with nominal plant and velocity-based gain-scheduled controller.
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robust Hurwitz stability. Robust performance can be
analysed by additional requirements on the root
locations as specified by a region G in the complex
s-plane (Ackermann, 1994). The G-region can be
obtained by setting specific performance criteria such
as peak overshoot (or damping) and settling time. For
perturbations of 720% in the aerodynamic parameters,
G-stability test results for the members of the closed-
loop velocity-based linearisation family are shown in
Fig. 9 (G corresponding to a peak overshoot require-
ment of Mpp30%), Fig. 10 (G corresponding to a
settling time requirement of tsp0:2 s) and Fig. 11 (G
corresponding to Mpp30% and tsp0:2 s). These robust
stability and performance results apply to the members
of the velocity-based linearisation family of the closed-
loop system. Robust stability and performance of the
linearisations need not, of course, imply the correspond-
ing robust stability and performance of the associated
nonlinear system (current theoretical results guarantee
such a relationship only under appropriate slow varia-
tion conditions (Leith & Leithead, 1998a). Nevertheless,
simulation results confirm the robust stability and

performance of the nonlinear system as indicated by
the foregoing analysis; for example, the step responses
for independent variations of720% in the aerodynamic
parameters are shown in Fig. 12.

Fig. 8. Graphical robust Hurwitz stability test.

Fig. 9. Graphical robust G-stability test (Mpp30%).

Fig. 10. Graphical robust G-stability test (tsp0:2 s).

Fig. 11. Graphical robust G-stability test (Mpp30%; tsp0:2 s).

Fig. 12. Step responses of perturbed (725% variations in aerody-

namic parameters) plant with velocity-based gain-scheduled controller.
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5. Summary and conclusions

In this paper, a modern gain-scheduling methodology
is proposed which exploits recently developed velocity-
based techniques to resolve many of the deficiencies of
classical gain-scheduling approaches (restriction to near
equilibrium operation and to slow rate of variation) and
to address a number of outstanding, yet fundamental,
issues in gain-scheduling design (including the inter-
polation strategy and choice of controller realisation).
This is achieved while maintaining a close analogy with
classical gain-scheduling, including continuity with
linear methods and an open design framework (any
linear synthesis approach may be used) which directly
supports divide and conquer design strategies. The
formulation of this design framework is based upon a
number of fundamental theoretical results which are
brought together and extended to establish a coherent,
and soundly based, methodology for nonlinear gain-
scheduling design. Particular issues addressed here
include:

* Inclusion of dynamic information at off-equilibrium
operating points as well as at equilibrium points. This
addresses the key limitation of classical approaches
and creates the opportunity for designing controllers
which are globally valid.

* Support for divide and conquer design. Interpola-
tion between linear control designs is formulated
as a modelling task which exploits recent develop-
ments in blended multiple model representations of
nonlinear systems. The utility of this approach is
demonstrated by the support provided for divide and
conquer design of global dynamic inversion control-
lers.

* Selection of controller realisation. The transfer
function only specifies the realisation of a linearisa-
tion to within a linear state transformation. It is,
therefore, also necessary to ensure that the
state-space realisations of the members of the
controller linearisation family are suitably compatible
with one another. Recent results in (approximate)
dynamic inversion theory are used to develop a
soundly based approach for the selection of an
appropriate choice of controller realisation
(equivalently, an appropriate choice of state co-
ordinates for each member of the controller linear-
isation family).

It is emphasised that the resulting controllers are
globally valid and involve no inherent slow variation
requirement. The application of velocity-based gain-
scheduling techniques is demonstrated in a demanding,
highly nonlinear, missile control design task. Scheduling
on instantaneous incidence (a rapidly varying quantity)
is well-known to lead to considerable difficulties with
classical gain-scheduling methods. It is shown that the

methods proposed here can, however, be used to
successfully design an effective and robust gain-sched-
uled controller.
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