
154 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 48, NO. 2, FEBRUARY 2001

An Automatic Sequential Recognition Method for
Cortical Auditory Evoked Potentials

Ulrich Hoppe, Member, IEEE, Stephan Weiss*, Member, IEEE, Robert W. Stewart, Member, IEEE, and
Ulrich Eysholdt

Abstract—The detection of cortical auditory evoked potentials
(CAEP), which are part of the electroencephalogram (EEG) in re-
action to acoustic stimuli, has important applications such as deter-
mining objective audiograms. The detection is usually performed
by a human operator, with support from often basic signal pro-
cessing methods. This paper presents a novel mechanism for the
detection of CAEPs, which is fully automatic and stops the mea-
surement when a given confidence is reached. This proposed de-
tector comprises of three stages. First, a feature extraction by a
wavelet transform parameterizes the time domain EEG signal by
only few transform coefficients. This feature vector is then classi-
fied by a neural network which yields a binary vote on every EEG
segment. Finally, a sequential statistical test is performed on suc-
cessive classifications; this stops the measurement if a specified de-
cision confidence has been reached. The adjustment of the detector
according to a clinical database is discussed. Thus adjusted, the
proposed CAEP detection scheme is applied to a study, and com-
pared with a human operator. The results demonstrate that this
method can attain similar results, but outperforms the human ex-
pert for stimulation levels close to the hearing threshold.

Index Terms—Automatic detector, cortical auditory evoked po-
tentials, neural networks, sequential statistical test, wavelet anal-
ysis.

I. INTRODUCTION

CORTICAL auditory evoked potentials (CAEPs) can be ob-
served as part of the electroencephalogram (EEG) and re-

flect the neural processing of acoustic stimuli in the cortex. In
their clinical application, CAEPs have the advantage of enabling
frequency specific testing of the hearing ability by appropriate
selection of the stimulus [1]. The recognized presence or ab-
sence of a CAEP in response to an acoustic stimulus of speci-
fied frequency and level can be used to determine an objective
audiogram. Objectivity is achieved in the sense that the active
cooperation of an experimentee or patient is replaced by the in-
terpretation of the EEG by an operator [1]. Objective hearing as-
sessment is important to, for example, establish reliable hearing
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thresholds for persons with low compliance, e.g., small children
[2]. The work presented here is concerned with an automatic de-
tector to help and assist in identifying CAEPs.

When an acoustic stimulus reaches the inner ear it elicits
neural activity along the neural auditory pathway from the spiral
ganglion via nerve fibers over the brainstem up to the auditory
cortex, where it results in auditory perception approximately
100 ms after the onset of the stimulus [3]. Triggered by pro-
cessing in the auditory cortex [4], CAEPs, therefore, give evi-
dence of correct auditory perception. According to [5] and refer-
ences therein, for most human adults the signal properties of the
CAEP are quite similar when the same measurement paradigm
is used and the central auditory processing is normal. The CAEP
consists of waveforms with specific latencies with respect to the
stimulus onset. The literature names their minima and maxima
due to polarity and sequence and , whereby

and are the most stable waves of a CAEP with peak la-
tencies of about 100 ms and 175 ms, respectively [5]. It is gen-
erally the recognition of this - -complex which is used to
establish one of two hypotheses: no CAEP within EEG; and

: CAEP within EEG [6].
Variations of amplitudes and latencies of the CAEP waves

occur and depend—besides age, sex, ear of stimulation, hearing
ability, and vigilance of the experimentee—on the frequency,
level and repetition rate of the stimuli [5]. While many of
these factors only contribute little or can be controlled during
the measurement, the individual sensation level is in general
unknown and has an observable influence: As the stimulus
level approaches the hearing threshold, the CAEP waves appear
weaker and more delayed due to prolonged auditory processing
for quieter sounds [3]. An example is given in Fig. 1, where
averaged EEGs recorded synchronously to stimuli of different
intensities are shown.

Besides this variability, detection of CAEPs is impeded by
background EEG due to visual, motoric, and sensoric activities
of the experimentee, resulting in a very low signal-to-noise ratio
(SNR) of less than 10 dB. As CAEP and background EEG
cover similar frequency bands, it is impossible to detect a CAEP
from EEG measurements with only a single stimulus. Rather,
the detection of CAEPs generally has to be based on repeated
stimuli and the acquisition of typically about 30 to 80 “sweeps”
which, here, refer to EEG segments recorded under identical
conditions synchronously to the given stimulus. Many methods
for support in this decision have been proposed, and range from
simple averaging to more advanced signal processing.

Simple averaging of successive sweeps is a common, but
often sub-optimal CAEP reconstruction method, since station-
arity of the background noise, invariance of the CAEP, and
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Fig. 1. EEG averages over 100 sweeps obtained from a single individual:
(a)–(d) variable stimulation intensities of 80, 60, 40, and 20 dB above hearing
threshold (SL) applied att = 0 containing CAEP; (e) no stimulation (�1 dB)
and, hence, no CAEP.

the absence of correlation between CAEP and noise have to
be assumed. Due to varying vigilance and habituation effects
during the measurement, this is only approximately satisfied
[7]. Methods have been proposed to take variations of the
background EEG into account by estimating the noise power
in every sweep [8]–[11], and weighting their contribution to
the average accordingly. Thus, noisier sweeps and artifacts are
disemphasized. Other approaches try to enhance the SNR by
considering the variations of the central auditory processing
during the measurement [12]–[14]. These techniques assume
that the latencies of the CAEP vary over time, leading to
an approximate affine translation of the signals. The actual
translations are estimated by cross correlation of every single
sweep with predefined patterns. SNR enhancement is then
achieved by averaging the latency-corrected sweeps. Clearly
limited by the small sample size for variance-type estimations,
such methods can only be moderately successful.

A number of parametric approaches aim to replace the subjec-
tive interpretation of the averaged CAEP by an automatic classi-
fication, which is generally based on the statistics of some sweep
parameters. Literature offers a wide range of parameters being
used, like CAEP relevant samples of the digitized signals, se-
lected Fourier coefficients, energy of averaged sweeps, or cor-
relation coefficients with “normal” CAEP [15]. Coarse SNR es-
timates of the CAEP/EEG based on the comparison of a stan-

dard average with a “ average,” where every second sweep is
included with reversed sign, were also used to classify CAEPs
[16], [17], [15]. Wavelet coefficients have been used to parame-
terize evoked potentials successfully [18], and have been shown
to perform at least comparable to the above parametric methods
for CAEPs [19]. However, such parametric approaches require to
a priori set a threshold for classification and cannot provide stop-
ping criteria for the measurement based on a specified error rate,
which usually is regarded as major drawback in clinical use.

In the approach proposed here, the good parameterization
property of the wavelet transform is exploited to build a detector
with stopping criterion and specified error rate. This detector is
outlined schematically in Fig. 2. First, a selected set of discrete
wavelet transform (DWT) coefficients, a so called “feature
vector” (FV), is calculated for each measured sweep. The dimen-
sion of the FV canbe much smaller than the original time-domain
signal without loss of too much information on a CAEP [18],
[19]. The FVs of successive sweeps are each classified by a
neural network (NN), which maps the FV onto a single binary

output. A similar approach is implemented by wavelet
networks [20], which combine both a wavelet transform for
parameterization and an NN in a hybrid classifier. As the binary
classification of the NN bears a high type-I-error (incorrect
acceptance of ), a sequential statistical test forms the last stage
of the detection procedure, judging the number of positive and
negative sweep classifications produced by the NN. This test will
provide a decision based on a predefined type-I-error rate, and
stops the measurement when this confidence limit is reached.

In Section II, the proposed detector is introduced in detail.
Section III reports on the EEG equipment at hand and the re-
sulting data properties, which are used to adjust the different
stages of the detector. This includes the selection of the FV, the
dimensioning and training of the NN, and the adjustment of the
sequential statistical test. The application of our method to a
study using clinical data is reported in Section IV, compared to
the results achieved by a human operator. Finally, we draw con-
clusions in Section V.

II. A UTOMATIC DETECTORMETHODS

This section describes in detail the principles of the proposed
detection scheme and its components. The parameterization
by DWT coefficients is addressed in Section II-A. Section II-B
introduces a NN classification of the features, thus, extracted
by the DWT. Finally, a sequential statistical test to assess the
classification results of successive sweeps is introduced in
Section II-C. The adjustment of the detector components with
respect to EEG/CAEP data will be performed in the separate
Section III.

A. CAEP Feature Extraction by Wavelet Transform

To parameterize a CAEP and condense the information on
whether an EEG contains or does not contain a CAEP within
only few coefficients, a wavelet transform is invoked. Similar to
the Fourier transform, the wavelet transform performs a least-
squares fit of an analysis function to the time domain data. How-
ever, rather than a sinusoid extending over an infinite interval,
here wavelet functions with a limited support are employed as
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Fig. 2. Block diagram of the CAEP detection scheme.

Fig. 3. Octave filter bank to compute an MRA of depthD = 3; deeper decompositions are achieved by further splitting� .

basis functions, which is advantageous when analyzing transient
signals [21]. For the DWT considered here, a set of orthogonal
basis functions is obtained by scaling and translation of a mother
wavelet.

An efficient calculation of the DWT coefficients in the case of
discrete-time data can be achieved with a multiresolution algo-
rithm (MRA, [22]). For a dyadic DWT, this MRA is performed
by filtering the signal to be analyzed with an octave filter bank
as shown in Fig. 3. The high-pass filter forms a quadra-
ture mirror filter (QMF) pair [23] with the low-pass of the
filter bank. The input sequence to the octave filter bank, ,
is the signal to be analyzed. Through successive low- and
high-pass filtering of the samples in the lower frequency band,

, and decimation of the resulting signals by a factor of two
(denoted as ), subband samples are obtained, which,
except of the lowest frequency band, represent the DWT coeffi-
cients. The coefficients are intermediate values and corre-
spond to a dual basis function of the wavelet, a so called scaling
function [22]. The filters and are sampled version of
the underlyingscaling functionand wavelet and, therefore, deter-
mine which DWT—amongst a large variety of possible wavelet
functions (see, e.g., [22], [21], and [24])—is being implemented.

Since the signal to be analyzed, , is only defined on a fi-
nite interval , suitable signal extensions [25] or
boundary filters [26] have to be selected. As both yield identical
results [26], for ease of implementation the first possibility will
be pursued. Zero padding is not viable for decomposition with
a deep octave bank, as information will be blurred over large
intervals by the transient behavior. Periodization of the original
data and all intermediate filtering results however permits
to filter in steady-state and, thus, retain all required information
within a preserved period of the signal. With the possibilities of
odd or even periodization [25], the MRA yields DWT coeffi-

cients that completely describe the original time seriescom-
prising samples. However, restrictions to symmetric wavelets
apply, if an odd periodic extension is selected [22].

Based on EEG data, Section III will determine, which wavelet
function and periodic extension will be used for the proposed
automatic detector and which coefficients can be isolated as sig-
nificant. The task will be to identify a subset of coef-
ficients collected in a FV, , that can describe the CAEP suf-
ficiently well. Section III will also show why these coefficients
on their own can only yield a rather unsatisfying indication of
a CAEP. This will motivate the requirement of the NN classifi-
cation and sequential test performed on the selected significant
DWT coefficients in the FV described in Section s II-B and Sec-
tion sII-C to ensure a reliable and systematic CAEP detection.

B. NN Classification

The aim of this section is to introduce a classification method
for single sweeps distinguishing between “containing a CAEP”
or “not containing a CAEP” based on the set ofDWT coef-
ficients in the FV. Due to interindividual variations of CAEP-la-
tencies and -amplitudes these FVs do not exhibit a single specific
pattern. Instead,manypatternsmustberegardedasbeingspecific
forCAEPs.So far, thereexistsno theoretical treatmentof thisdis-
crimination problem; hence, heuristic classifiers have to be used.
Artificial NNs provide the possibility of learning by groups of
sample FVs and require only little computational effort.

A multilayer perceptron was used for classification of the FV
calculated for each sweep. This type of NN comprises an input
layer with nodes corresponding to the dimension of the FV,
onehidden layerwith neuronsandanoutput layerwithasingle
neuron ( network). Since the NN is a nonlinear
processor, a bias removal and normalization with respect to the
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-normareapplied to theFV prior to feeding it into theNN.
This operation excludes interindividual amplitude differences
that might be incurred due to slightly different measurement
impedances and anatomical differences. The resulting modified
FVs nowlieon thesurfaceofan –dimensionalhypercube.

While the number of nodes in the input layer is determined
by the dimension of the FV, the number of neurons in the hidden
layer, , has to be selected appropriately. If is chosen too
small and not enough hidden neurons are used, during training
the NN is unable to classify all FV of the learning set of data.
On the other side, a too large number of hidden neuronswill
cause the NN to be too specific for the learning data set, and
prevent the NN to be able to interpolate (or “generalize”) when
slightly different CAEP data is presented for classification.

The classification process for a FV , where is the sweep
index, can be summarized as

(1)

where tanh is a vector valued hyperbolic tangent and a
Heavyside-function [ 1 for , 0 else] to pro-
duce a binary classification . During the training
phase of the NN the parameters in weight matrices, ,
and bias vectors , are adjusted such that the classifica-
tion error for certain training FVs will be minimized. This can
be done by the backpropagation algorithm1 [27], [28]. The de-
scription of the FV set used for the NN training to appropriately
select and adjust the weight and bias parameters in (1) will
be described in detail in Section III-C.

It is obvious that this classification based on single sweeps
bears large classification errors. This is unavoidable as the time
signal in the spontaneous EEG is known to often exhibit pat-
terns similar to a CAEP. In Section III-C, we will establish the
exact probability for false detection of a CAEP by the ap-
propriately dimensioned and trained NN. This error rate
can be interpreted as the fractional area on the surface of the

-dimensional hypercube occupied by those FVs which
will be classified as a CAEP.

The relatively high false positive rate that will be encountered
here is due to the low SNR of the CAEP within the spon-
taneous EEG. Enhancement of this SNR could be achieved
by sub-averaging over two or more sweeps with subsequent
NN-classification of the FV of the averaged data. This, however,
has drawbacks. Firstly, this procedure prolonges measurement
time proportionally. Secondly, although the false negative error
is reduced, the false positive error classification remains
unaffected. A better approach can be achieved by sequential
statistical analysis of the NN classification results. The statistical
method to perform this final stage of the detector is outlined next.

C. Sequential Statistical Analysis

To assess the classification results yielded by the NN in Sec-
tion II-B, usually the statistics of a fixed numberof sweeps
is tested. Based on this standard method introduced in Sec-
tion II-C1, in Section II-C2 we derive a sequential test based

1To apply the algorithm, for differentiability during training the output nonlin-
earitys(x) is replaced by a hyperbolic tangent; subsequently the desired output
of the NN during training was in ]-1;1[.

on [29], [30], which only defines an upper limit of sweeps,,
but can be stopped earlier if the statistics agree.

1) Statistical Test with Fixed Sample Size:Consider a
random series of EEG sweeps measured without any acoustic
stimulation and, therefore, without any CAEP. The classification
results of the subsequent FVs by the NN gives a sequence of
zeros and ones, whereby the probability to misclassify such FVs
as to “containing a CAEP” ( 1) is denoted by .
After recorded sweeps the sum of all classifications

(2)

lies between zero and. Since the single classification results are
independent, the sum is binomially distributed. Thus, the
problem is to test the null hypothesis : (no CAEP is
inside the EEG) against the alternative: (a CAEP
is present). The binomial distribution can be approximated for
sufficiently large by a Gaussian distribution with parameters

(3)

Once the error rate for the NN classification in Sec-
tion II-B is established from test data, the probability for

after classifications can be set to
take on a fixed value by selecting the quantity appropriately.
Using the correct values for and instead of the Gaussian
approximations in (3), will become slightly smaller. Hence,
the approximation is conservative in the sense that the true
value for is slightly smaller when based on the assumption
of Gaussianity. With these considerations, a statistical test
with a predetermined error of false positive classifications
(type-I-error) can be created.

Using this statistical test after a fixed sample size ofsweep
classifications, can be accepted or rejected based on whether
the distribution is inside or outside the expected interval with a
prespecified confidence. However, it is important to note that this
test only works with a fixed number of sweep classifications.

2) Sequential Statistical Test:Sequential testing means that
although the sample size has an upper limit,, the sum of
NN classifications

(4)

where is the sweep index, is checked during the entire measure-
ment. The measurement will be stopped immediately if certain
statistical limits are exceeded, resulting in an acceptance of.

Due to the complex distribution of , the statistical limits
cannot be directly calculated. Therefore, they were determined
using Monte-Carlo simulations based on test data, which are
described in detail in Section III.

Example: An example expressing the main idea of the se-
quential test is shown in Fig. 4. There, the abscissa represents
the number of single sweep measurements,, the ordinate the
sum of binary NN classifications. The upper limit in this
example is 75. If after sweeps exceeds the upper
boundary, a CAEP is detected and the measurement will be
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Fig. 4. Sequential test plan with acceptance and rejection boundaries for
assessment of NN classification (L =75 andp = 0.24); dashed line: mean
value for the sum of positive NN classification for random sweeps; dotted line:
example of sweep with CAEP detected afterl = 18 NN classifications.

stopped. If the lower boundary is reached aftersweep record-
ings, it becomes impossible that the upper boundary is met in
the remaining sweeps, a CAEP is rejected and the mea-
surement can be stopped. The dashed line in Fig. 4 shows the
mean value for positive NN-classifications in the
absence of a CAEP (type-I-error). An example for is given
with the dotted line which, here, passes the acceptance boundary
( 10) after 18 sweep classifications, and a CAEP
is detected. It can be easily calculated that a minimum number
of 3 sweep classifications is required before a CAEP can be
detected under the conditions of this example.

The above sequential test procedure can be regarded as a
semi-adaptive decision algorithm [29]. If the SNR of the CAEP
inside the ongoing EEG is high enough, the algorithm will con-
siderably shorten the time which is necessary to reach a deci-
sion. However, if the SNR is extremely low, a larger number
of measurements will be required. In case of the example given
above, the test will need an average number of 62 sweeps until a
measurement will be rejected as non-CAEP, as indicated by the
intersection of the mean sum with the rejection boundary
in Fig. 4.

III. A DJUSTMENT OFDETECTORUSING REAL DATA

Now, step by step, the general automatic detector outlined in
Section II will be adjusted with respect to our data acquisition
equipment and procedure, which is discussed in Section III-A.
This has consequences for the tailoring of the DWT and the se-
lection of transform coefficients parameterizing CAEPs in Sec-
tion III-B. The subsequent dimensioning and training of the NN
classifier is described in Section III-C. The false positive clas-
sification rate of the NN together with a selected significance
finally sets the parameters for tuning the sequential test in Sec-
tion III-D.

A. Equipment and CAEP Data

All EEG measurements employed in this work were obtained
under clinically proven conditions in an electrically insulated
and acoustically anechoic chamber [31], where patients and ex-
perimentees are seated in a comfortable armchair in order to

Fig. 5. Examples from the ensemble of synthetic CAEPs for additional NN
training.

minimize motoric artifacts inside the EEG. The vigilance of per-
sons under test is ensured by monitoring with a video system.
The stimulation system (ASTI20, ZLE Corp., Munich) used
here produces predefined signals, which are presented via a
headphone (Beyerdynamics DT48) to the test persons and pa-
tients. The EEG is measured as a voltage from the ipsilateral
mastoid (M1, M2) and a contralateral forehead position (FP1,
FP2) of the stimulated ear against a ground electrode positioned
on the center of the forehead (FZ). After differential EEG ampli-
fication by approx. 80 dB, the analog EEG signal is prefiltered
by Bessel filters of 4th order with a passband region between 1.6
Hz and 20 Hz. Finally, the stimulation system triggers a 12-bit
analog-to-digital converter sampling at 640 Hz for synchronous
digital recording, yielding 2 samples for 800 ms seg-
ments of EEG represented within each sweep.

Sine-bursts of 300–ms duration at frequencies of 500 Hz, 1
kHz, 2 kHz, and 4 kHz were used as stimuli, with intensities set
to 20-, 40-, 60-, and 80-dB sensation level (SL) for individual
experimentees. For measurements without CAEP, the stimulus
could also be set to zero. The stimuli were separated by ran-
domized inter-stimulus intervals of about 1–2 s to avoid artifacts
through periodic repetition. For each stimulus situation a set of
at least 75–100 sweeps was recorded. Hence, a complete mea-
surement for one stimulus situation—defined by the stimulus
frequency, stimulus level and the side of the stimulated ear—ex-
tends over a duration of 2–3 min.

A set of 600 real CAEP measurements recorded with the
above equipment was available for the adjustment of the de-
tector. These measurements had been performed in the clinical
routine on adult patients with a known psychoacoustic hearing
threshold. The presence of CAEPs had been clearly identified
by a human expert. The selection of the 600 measurements was
done such that stimulation levels between 20- and 80-dB SL
were uniformly represented.

Besides the real measurements, 100 synthetic CAEP time se-
ries were additionally produced for the later training of the NN.
These simulated CAEPs consisted of a combination of subse-
quent sine and cosine half-waves with different positions of the
maxima and different time scales [32], with examples given in
Fig. 5.

B. Feature Vector

To produce a suitable FV, a number of wavelets and signal pe-
riodizations for the MRA have been tested on the data set to eval-
uate parameterization. The test was performed such that trans-
form coefficients were monitored across each set of sweeps,
and the relative frequency (distribution) of each coefficient was
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Fig. 6. (a)–(d) Frequency distributions of coefficients� , � , � , and� , respectively, averaged over eight successive sweeps; white histograms refer
to stimulus-synchronized sweeps (1 kHz, 80-dB SL), while black bars belong to coefficient values of data without given stimulus.

compared to the distribution of an EEG measurement with no
CAEP. The comparison was realized by taking normally aver-
aged and averaged sweeps, whereby the average was taken
over a small sample size of eight successive sweeps. A wavelet
with good parameterizing properties would then have at least
one coefficient, for which a clear difference in the distributions
for averaged sweeps could be measured [19].

From standard Daubechies wavelets, near-symmetric wave-
lets [21], and Mallat’s wavelet [22], such testing gave best results
for the Mallat wavelet with odd periodic extension of the data.
This preference for odd extension is likely to be due to the

important components of a CAEP being close to the beginning of
the sweep interval and, therefore, sensitive to discontinuities and
wrap-around experienced with even periodic extensions [33].
Testing for other symmetric wavelets apart from Daubechies-2
(Haar) and Mallat wavelets was extended to a class of symmetric
biorthogonal wavelets [24] which, however, did not produced
better results than Mallat [34], [19].

Example: An example of the distributions measured for four
different Mallat-DWT coefficients ( , , , and )
for a measurement with a stimulus level of 80 dB above hearing
threshold is shown in Fig. 6. Obviously, some coefficients differ
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in their distributions depending on the presence of a stimulus
(here, and ) while for others (here, and ) no
difference can be established. In this case, the first two coeffi-
cients would be marked as “significant” for a CAEP.

With a measure how well the two distributions separate [19],
not only was the Mallat wavelet determined amongst the library
of wavelets tested over the data set, but the marking of “sig-
nificant” coefficients would be mainly restricted to a subset of
seven coefficients

(5)

This FV was optimized over all sweeps in the data set, and
represents approximately the first 400 ms and the frequency in-
terval of a sweep. As this covers both
the latencies and the frequency range of 3–6 Hz generally asso-
ciated with CAEPs [15], [35], the selection in (5) can be con-
sidered robust in capturing the required information. However,
not all coefficients in (5) have to be indicative for a CAEP in an
individual measurement, as the above example demonstrated.

An initial detector [34] was based on measuring the separa-
bility of distributions of averages over six to ten sweeps.
This “separability” was based on the overlap and relative dis-
tance of mean values of the distributions. If the separability for
any coefficient of the set was above a predetermine threshold,
a CAEP would be assumed. Over the data set, this gives a false
positive error rate of approx. 9.8%. This method, however, re-
quires an optimuma priori threshold selection, has no known
confidence, and needs a fixed set of measurements [19]. Here,
we use this experience as a motivation for the wavelet and coef-
ficient selection for the FV, but want to use the systematic NN
classification and sequential testing, which will be adjusted next
based on the properties of the FV derived over the data set in
Section III-A.

C. Dimension and Training of the NN

The FV of seven DWT-coefficients isolated in Section III-B
encompasses the time-frequency range important for CAEPs
and, therefore, can form the basis for further classification.
Since the amplitude of the bioelectric brain signals largely
depends on uncontrollable individual parameters of the test
person’s vigilance and electrode impedances, no reliable infor-
mation regarding CAEPs can be derived from the modulus of
specific coefficients. Therefore, each FV was modified as de-
scribed in Section II-B. The training of the NN was performed
with FVs calculated from the 600 CAEP measurements
and from 100 simulated CAEP time series, as outlined in Sec-
tion III-A. Besides these FVs containing a CAEP, the learning
group included 700 random FVs representing measurements
without CAEP.

Different numbers of hidden neurons were used for the
training in order to separate the CAEP from the non-CAEP
in order to achieve best performance in the sense outline in
Section II-B. With hidden neurons the classification
for the training data was poorer in the sense that not all of the

FVs containing a CAEP were correctly classified. With
8 hidden neurons 100% of the CAEP and about 76% of the
FV from the non-CAEP set were correctly classified. A further
increase in the number of hidden neurons, , gave better
results for the part of the learning set not containing a CAEP,
but would decrease generalization due to the limited amount
of sample FVs. The excitation of the NN with a restricted set
of training data leads to adaptation of the NN parameters to
this special data and is, therefore, only optimal for the training
case. Hence, a number of 8 hidden neurons was selected
as optimal choice for our classification problem.

In order to evaluate the precise false positive rate of the NN,
Monte-Carlo simulations were performed using 10random
input vectors. The positive classification rate for these FV was
determined to be 0.24, and proved to be very stable over
repeated trials of this experiment.

D. Sequential Test Setup

Once the NN is trained, the false positive rate, 0.24,
is fixed, as determined in Section III-C. The sequential test has
to check whether the actual positive rate of the NN,, is sig-
nificantly higher than the rate . Two parameters of the se-
quential test proposed in Section II-C have to be preset. As max-
imum number of NN-classification, 75 appears a reason-
able number in the light of the usual 30–80 sweeps required for
averaging CAEP measurements. The false positive rate (signifi-
cance ) of the complete sequential test was selected to be
0.05.

With 0.05 and the known false positive rate 0.24
of NN classifications, can be adjusted. A rough and very
conservative estimate for can be derived using the Bonfer-
roni-correction [36], resulting in a approximation 3.02.
A tighter approximation for can be found by Monte Carlo
simulation.

For the Monte Carlo simulation, successive NN-classifica-
tions of an EEG measurement with no stimulation and
0.24 were simulated by drawing from a random variable uni-
formly distributed on the interval and applying
the Heavyside function. A resulting value of “0” represents “no
CAEP detected,” while “1” represent “CAEP detected.” With
a total number of 500 000 random series, each containing
75 dichotome classification results , sequential tests were
simulated with ana priori probability for positive classifica-
tions of 0.24. By running the factor from zero to
five in steps of 0.001, was determined such that the sum

of NN classifications exceeds the limit at least at one time
in 5% of all series

(6)

where and are defined as in (3) withsubstituted for .
In order to satisfy a 5% type-I-error probability, the numerical
simulation resulted in the choice 2.83. Repeated Monte
Carlo trials resulted in variations of of less than 0.01.
Hence, in the proposed CAEP detector, the parameter
2.83 will be used in the sequential test.
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IV. CLINICAL EVALUATION AND DISCUSSION

The proposed sequential detector adjusted in Section III was
evaluated in a clinical study, which is discussed in the following.
Section IV-A introduces the study group and the measurements
taken. The automatic detector is compared to a human expert in
CAEP classification in an experiment, for which the conditions
are set out in Section IV-B. Section IV-C presents and discusses
the results.

A. Subjects

Eleven normal hearing volunteers (five male, six female) took
part in the study. The experimentees were students at the Uni-
versity of Erlangen-Nürnberg with an average age of
years. The subjects had no indication of hearing deficiencies or
neurological diseases and did not take any drugs the day prior
to investigation. Their normal hearing status was established by
pure tone audiometry, where the hearing loss at all frequencies
between 125 Hz and 10 kHz was less than 10 dB. Addition-
ally, psycho-acoustical thresholds for the stimulus levels used
to evoke CAEPs were determined with the same apparatus. The
stimulus levels mentioned in the following represent the levels
with respect to the individual hearing thresholds, indicated by
decibel sensation level (dB SL).

A total of 32 EEG measurements were obtained form each
experimentee, to account for all combinations of four different
stimulus level (20-, 40-, 60-, and 80-dB SL), four different fre-
quencies (0.5, 1, 2, and 4 kHz), and the testing of both ears. Each
measurement consisted of 75 EEG sweeps. In addition to these
regular CAEP measurements, for each subject a number of 32
sets of EEG recordings were taken without any auditory stim-
ulation but under otherwise identical conditions. For this case,
again a minimum number of sweeps of 75 was recorded. Finally,
all measurements were randomly ordered to exclude inference
from previous decisions on the current measurement under test.

B. Test Setup and Comparison with a Human Operator

For the study, the available measurements from the subject
group introduced in Section IV-A totaled 352 data sets from
EEG measurements with CAEP (stimulation above hearing
threshold) and further 352 data sets without CAEP due to
no given stimulus. Since the complete sets of single sweep
responses were stored during the EEG recordings, the whole
evaluation procedure can be performed off line. Thus, the
above measurements were inspected 1) with the automatic
method described in this paper and 2) by an experienced
human operator. From the automatic CAEP recognition both
the number of necessary stimulations for sequential detection
and the result of the procedure (CAEP/no CAEP) were stored.

The human operator to evaluate the data was a member of sci-
entific staff at the University hospital in Erlangen with 15 years
of experience to classify CAEPs for objective hearing assess-
ment in the clinical routine. This human operator was placed
in a fully realistic situation for EEG recordings: for each stim-
ulus condition (stimulated ear, stimulation level and frequency)
the averages of subsequent sweeps in a measurement were cal-
culated and displayed on a PC monitor. The timing of the dis-
play was chosen similar to the interstimulus intervals during real

(a)

(b)

Fig. 7. (a) Decision rates for the automatic detector and those of an experi-
enced human operator; (b) mean required number of sweeps in a measurement
until a decision has been reached; a level of�1–dB SL refers to no stimulus
given.

measurements. However, the human operator was blind to the
actual stimulus level of the presently displayed measurement
and he had no information about the AEP at higher/lower level
for the same subject. As soon as the operator was able to reach
a decision, he could stop the measurement simulation, and both
his decision and the required number of stimuli were recorded.

C. Results and Discussion

Fig. 7(a) shows the decision results for the two methods—au-
tomatic detection and experienced human operator—on the data
sets of the subject group described in Section IV-A. The average
number of sweeps required by both the detector and the operator
to reach a decision is given in Fig. 7(b). The results have been
displayed separately for different stimulus levels, with either no
given stimulus, or stimuli ranging in intensity between 20 and
80-dB SL in steps of 20 dB.
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For the automatic detector, the type-I-error rate had been
preset to 5% ( 0.05) as described in Section III-D. This
closely agrees with the reached average false positive classi-
fication (i.e., an CAEP is incorrectly assumed) of 5.9% for
measurements with no given stimulus. It is clear from Fig. 7(a)
that the human operator has a considerably higher type-I-error
rate, even though he had been informed that half the measure-
ments in the database contained no CAEP. This difference was
evaluated as significant with the one-sided McNemar-Test [37]
on a significance of 5%.

Looking at different stimulus levels, Fig. 7(a) shows a clear
increase in the detection rate of CAEPs with the stimulation
intensity for both the automatic sequential detector and the
human operator, while the corresponding required measure-
ment times in Fig. 7(b) decrease. This is due to the fact that
stronger stimuli yield clearer pronounced CAEPs with larger
amplitude and, thus, higher SNR, as shown in Fig. 1. Hence,
detection becomes easier and faster. Differences in the classi-
fication results between the human operator and the automatic
recognition were significant for the detection rate of CAEPs at
a 20-dB SL stimulus level, based the one sided McNemar-Test.

Therefore for EEG measurements with a stimulus level close
to the hearing threshold, the automatic sequential detector
achieves a much sharper discrimination between measurements
with and without CAEP than the human operator. The latter
yields a 6% higher false positive rate for measurements without
CAEP and a performance 15% below the false negative rate
of the automatic detector for stimuli 20 dB above the known
threshold of hearing. Concerning the decision time shown in
Fig. 7(b), longer measurements in case of the human operator
are due to hesitation in cases where the decision is difficult. The
automatic sequential detector outperforms the human operator
for most stimulus levels. The longest measurement times are
necessary for the case of no acoustical stimulation, i.e., the
absence of a CAEP from the EEG.

The CAEP classification by the human expert was repeated
six months after the first assessment with the same data and
method. From the total of 704 measurements 570 (81%) were
identically classified in both situations. In more clinically ori-
ented studies on assessment of hearing via CAEP measure-
ments by other human operators “CAEP detection thresholds”
are reported to vary between 16 dB [38] and 27 dB [39] above
subjective hearing thresholds. The repeated decisions of the
human operator consulted in this study were well within these
limits.

Although the results obtained by the human operator should
be representative for the state of the art in CAEP classification
for hearing assessment in clinical routine, differences between
the procedure in our study and the standard in clinical routine
must be noted. First, the human operator in our study was in-
formed about thea priori probability of 50% for a CAEP. As
this information is unknown in clinical routine, generally the
clinical assessment might be worse compared to decision rate
in the study. Secondly, the CAEP analysis in clinical routine is
usually based upon a set of CAEP measurements at different
stimulus levels. This permits to see the dependency of ampli-
tudes and latencies on stimulus levels, which can enhance the
correct classification rates in the routine compared to our study.

It should further be noted that the human operator uses the
accumulated sweep information differently from the sequential
detection. His decision is based on linearly averaged sweeps,
while the proposed detection method is based on binary non-
linear classifications of single sweeps. For the later, the SNR
of the data has to permit retrieval of sufficient information from
single sweep data, as otherwise such classification would not be
optimal. In the application to CAEPs evidently enough informa-
tion is contained in single sweeps for decision making even at
low stimulus levels.

In summary, the performance of the sequential classification
can be regarded at least as good as the human operator. The rate
of correct decisions of the automatic detector is identical to or
higher than those attained by the human expert. Therefore, the
proposed automatic sequential detector appears to give a supe-
rior performance over an experienced human operator, yielding
a more accurate decision in shorter time. The better discrim-
ination for stimulation levels close to the hearing threshold is
particularly important, as it enables to determine the objective
audiogram more accurately.

V. CONCLUSION

We have introduced an automatic detection method for
CAEPs, based on a DWT for feature extraction, a feature
classification using a NN, and a decision mechanism based
on a sequential statistical assessment of the NN’s output.
Although the presented feature extraction by a dyadic DWT
may not optimally represent the CAEP, and despite the very
high type-I-error inherent in the NN classification, the final
detector stage with the sequential test is able to produce
satisfying results. Applied to a study, the comparison of our
method to results obtained by an experienced human operator
was favorable in reducing both decision errors and measure-
ment time, particularly when operating with stimulus levels
in the proximity of the hearing threshold. This underlines the
suitability of the proposed approach, and the prospect to make
clinical audiometric investigations via CAEP more accurate
and faster.

Although there exists a considerable quantity of contributions
dealing with the signal processing aspect for auditory evoked
potentials, only few of these methods have been established in
clinical routine since they are not adjusted to the clinical require-
ments such as robustness for noisy data, restrictions on mea-
surement duration, and exactly known rates of false positives.
Clinically, the detection of a CAEP when no CAEP is present
(type-I-error) is the most problematic case since it will result in
failure to give, for example, a child the help it needs by erro-
neously judging hearing to be present, at least in CAEP terms.
Therefore, the appeal of the proposed automatic detector lies in
its known statistical confidence, together with its good discrim-
ination and the reduction in measurement time.
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