Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Analyzing robustness of NF-kappaB signaling transduction networks via bifurcation analysis

Lu, Baoyun and Yue, Hong (2010) Analyzing robustness of NF-kappaB signaling transduction networks via bifurcation analysis. Systemics and Informatics World Network, 10. pp. 37-47. ISSN 2044-7272

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Robustness is a widely observed and important property of biological systems. The nuclear factor-kB (NF-kB) signaling pathway is an important cellular signaling pathway that is involved in a variety of cellular processes including immune response, inflammation, and apoptosis. Oscillation is a common phenomenon in complex biological systems and it plays key roles in many cellular processes. Upon stimulation of TNFa, damped oscillations of NF-kB activity have been observed both experimentally and computationally in previous works. Bifurcation analysis has proven to be a powerful tool to identify the presence of complex behavior of dynamic systems. Based on a mathematical model of the TNFa mediated IkB-NF-kB signaling transduction pathway and also a simplified IkBα-NF-kB computational model with IkBβ and IkBε knock out, bifurcation analysis is performed to investigate the mechanism of biological robustness of the NF-kB signaling transduction pathway. In particular, we focused on the periodic solutions emerged via Hopf bifurcations and identified the parameter regions in which a stable periodic solution exists. Numerical study results confirm that IkBa is the key inhibitor of the NF-kB network and the cellular system has retained robustness even when some components are knocked out.

Item type: Article
ID code: 35273
Keywords: robustness, bifurcation analysis, limit cycle oscillation, NF-kB signaling transduction pathway, Electrical engineering. Electronics Nuclear engineering
Subjects: Technology > Electrical engineering. Electronics Nuclear engineering
Department: Faculty of Engineering > Electronic and Electrical Engineering
Related URLs:
Depositing user: Pure Administrator
Date Deposited: 26 Oct 2011 16:53
Last modified: 17 Jul 2013 11:15
URI: http://strathprints.strath.ac.uk/id/eprint/35273

Actions (login required)

View Item