Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Analyzing robustness of NF-kappaB signaling transduction networks via bifurcation analysis

Lu, Baoyun and Yue, Hong (2010) Analyzing robustness of NF-kappaB signaling transduction networks via bifurcation analysis. Systemics and Informatics World Network, 10. pp. 37-47. ISSN 2044-7272

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Robustness is a widely observed and important property of biological systems. The nuclear factor-kB (NF-kB) signaling pathway is an important cellular signaling pathway that is involved in a variety of cellular processes including immune response, inflammation, and apoptosis. Oscillation is a common phenomenon in complex biological systems and it plays key roles in many cellular processes. Upon stimulation of TNFa, damped oscillations of NF-kB activity have been observed both experimentally and computationally in previous works. Bifurcation analysis has proven to be a powerful tool to identify the presence of complex behavior of dynamic systems. Based on a mathematical model of the TNFa mediated IkB-NF-kB signaling transduction pathway and also a simplified IkBα-NF-kB computational model with IkBβ and IkBε knock out, bifurcation analysis is performed to investigate the mechanism of biological robustness of the NF-kB signaling transduction pathway. In particular, we focused on the periodic solutions emerged via Hopf bifurcations and identified the parameter regions in which a stable periodic solution exists. Numerical study results confirm that IkBa is the key inhibitor of the NF-kB network and the cellular system has retained robustness even when some components are knocked out.