Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Steady-state performance limitations of subband adaptive filters

Weiss, S. and Stenger, A. and Stewart, R.W. and Rabenstein, R. (2001) Steady-state performance limitations of subband adaptive filters. IEEE Transactions on Signal Processing, 49 (9). pp. 1982-1991. ISSN 1053-587X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Nonperfect filterbanks used for subband adaptive filtering (SAF) are known to impose limitations on the steady-state performance of such systems. In this paper, we quantify the minimum mean-square error (MMSE) and the accuracy with which the overall SAF system can model an unknown system that it is set to identify. First, in case of MMSE limits, the error is evaluated based on a power spectral density description of aliased signal components, which is accessible via a source model for the subband signals that we derive. Approximations of the MMSE can be embedded in a signal-to-alias ratio (SAR), which is a factor by which the error power can be reduced by adaptive filtering. With simplifications, SAR only depends on the filterbanks. Second, in case of modeling, we link the accuracy of the SAF system to the filterbank mismatch in perfect reconstruction. When using modulated filterbanks, both error limits-MMSE and inaccuracy-can be linked to the prototype. We explicitly derive this for generalized DFT modulated filterbanks and demonstrate the validity of the analytical error limits and their approximations for a number of examples, whereby the analytically predicted limits of error quantities compare favorably with simulations