Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Efficient implementation of accurate geometric transformations for 2-D and 3-D image processing

Dooley, S. and Stewart, R.W. and Durrani, T.S. and Setarehdan, S. and Soraghan, J.J. (2004) Efficient implementation of accurate geometric transformations for 2-D and 3-D image processing. IEEE Transactions on Image Processing, 13 (8). pp. 1060-1066. ISSN 1057-7149

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper proposes the use of a polynomial interpolator structure (based on Horner's scheme) which is efficiently realizable in hardware, for high-quality geometric transformation of two- and three-dimensional images. Polynomial-based interpolators such as cubic B-splines and optimal interpolators of shortest support are shown to be exactly implementable in the Horner structure framework. This structure suggests a hardware/software partition which can lead to efficient implementations for multidimensional interpolation