Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A direct derivative method for estimating kinetic parameters of biological networks

Jia, Jianfang and Yue, Hong (2011) A direct derivative method for estimating kinetic parameters of biological networks. In: 30th Chinese Control Conference, 2011-07-22 - 2011-07-24.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Challenged by strong nonlinearity of cellular network models, large uncertainty in model parameters, and noisy experimental data, a new parameter estimation algorithm, direct derivative method (DDM), is presented in which the measurement data are firstly fitted with smoothing splines, and then the first-order derivative of state variables are evaluated and substituted into the model. Thus, a dynamic optimization problem is converted into a linear or nonlinear regression problem. There is no need to solve ordinary differential equations of the system models iteratively, the computational complexity is therefore reduced to a large extent. Taking the IκBα-NF-κB signal transduction pathways as an example, unknown parameters are estimated effectively using the proposed DDM algorithm, and various factors that affect the results are investigated.