Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Molecular cloning of magnesium-independent type 2 phosphatidic acid phosphatases from airway smooth muscle

Tate, R J and Tolan, D and Pyne, S (1999) Molecular cloning of magnesium-independent type 2 phosphatidic acid phosphatases from airway smooth muscle. Cellular Signalling, 11 (7). pp. 515-522. ISSN 0898-6568

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Members of the type 2 phosphatidic acid phosphatase (PAP2) family catalyse the dephosphorylation of phosphatidic acid (PA), lysophosphatidate and sphingosine 1-phosphate. Here, we demonstrate the presence of a Mg(2+)-independent and N-ethymaleimide-insensitive PAP2 activity in cultured guinea-pig airway smooth muscle (ASM) cells. Two PAP2 cDNAs of 923 and 926 base pairs were identified and subsequently cloned from these cells. The ORF of the 923 base pair cDNA encoded a protein of 285 amino acids (Mr = 32.1 kDa), which had 94% homology with human PAP2a (hPAP2a) and which probably represents a guinea-pig specific PAP2a (gpPAP2a1). The ORF of the 926 base pair cDNA encoded a protein of 286 amino acids (Mr = 32.1 kDa) which had 84% and 91% homology with hPAP2a and gpPAP2a1, respectively. This protein, termed gpPAP2a2, has two regions (aa 21-33 and 51-74) of marked divergence and altered hydrophobicity compared with hPAP2a and gpPAP2a1. This occurs in the predicted first and second transmembrane domains and at the extremes of the first outer loop. Other significant differences between gpPAP2a1/2 and hPAP2a, hPAP2b and hPAP2c occur at the cytoplasmic C-terminal. Transient expression of gpPAP2a2 in Cos-7 cells resulted in an approx. 4-fold increase in Mg(2+)-independent PAP activity, thereby confirming that gpPAP2a2 is another catalytically active member of an extended PAP2 family.

Item type: Article
ID code: 35186
Keywords: amino acid sequence, animals, base sequence, cell membrane, cloning, amino acid, gene expression, guinea pigs, magnesium, molecular sequence data, phosphatidate phosphatase, protein processing, post-translational, sequence homology, Therapeutics. Pharmacology, Cell Biology
Subjects: Medicine > Therapeutics. Pharmacology
Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 02 Nov 2011 11:19
    Last modified: 05 Sep 2014 12:50
    URI: http://strathprints.strath.ac.uk/id/eprint/35186

    Actions (login required)

    View Item