Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Imaging and identifying defects in nitride semiconductor thin films using a scanning electron microscope

Naresh-Kumar, G. and Hourahine, Benjamin and Vilalta-Clemente, A. and Ruterana, P. and Gamarra, P. and Lacam, C. and Tordjman, M. and Forte-Poisson, M. A. di and Parbrook, P. J. and Day, A. P. and England, G. and Trager-Cowan, Carol (2012) Imaging and identifying defects in nitride semiconductor thin films using a scanning electron microscope. Physica Status Solidi A, 209 (3). pp. 424-426. ISSN 1862-6300

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We describe the use of electron channelling contrast imaging (ECCI) – in a field emission scanning electron microscope – to reveal and identify defects in nitride semiconductor thin films. In ECCI changes in crystallographic orientation, or changes in lattice constant due to local strain, are revealed by changes in grey scale in an image constructed by monitoring the intensity of backscattered electrons as an electron beam is scanned over a suitably oriented sample. Extremely small orientation changes are detectable, enabling small angle tilt and rotation boundaries and dislocations to be imaged. Images with a resolution of tens of nanometres are obtainable with ECCI. In this paper we describe the use of ECCI with TEM to determine threading dislocation densities and types in InAlN/GaN heterostructures grown on SiC and sapphire substrates.