Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Potential role for kv3.1b channels as oxygen sensors

Osipenko, O N and Tate, R J and Gurney, A M and Tate, Rothwelle (2000) Potential role for kv3.1b channels as oxygen sensors. Circulation Research, 86 (5). pp. 534-40. ISSN 0009-7330

Full text not available in this repository. (Request a copy from the Strathclyde author)


Hypoxia inhibits voltage-gated K channels in pulmonary artery smooth muscle (PASM). This is thought to contribute to hypoxic pulmonary vasoconstriction by promoting membrane depolarization, Ca(2+) influx, and contraction. Several of the K-channel subtypes identified in pulmonary artery have been implicated in the response to hypoxia, but contradictory evidence clouds the identity of the oxygen-sensing channels. Using patch-clamp techniques, this study investigated the effect of hypoxia on recombinant Kv1 channels previously identified in pulmonary artery (Kv1.1, Kv1.2, and Kv1.5) and Kv3.1b, which has similar kinetic and pharmacological properties to native oxygen-sensitive currents. Hypoxia failed to inhibit any Kv1 channel, but it inhibited Kv3.1b channels expressed in L929 cells, as shown by a reduction of whole-cell current and single-channel activity, without affecting unitary conductance. Inhibition was retained in excised membrane patches, suggesting a membrane-delimited mechanism. Using reverse transcription-polymerase chain reaction and immunocytochemistry, Kv3.1b expression was demonstrated in PASM cells. Moreover, hypoxia inhibited a K(+) current in rabbit PASM cells in the presence of charybdotoxin and capsaicin, which preserve Kv3.1b while blocking most other Kv channels, but not in the presence of millimolar tetraethylammonium ions, which abolish Kv3.1b current. Kv3.1b channels may therefore contribute to oxygen sensing in pulmonary artery.

Item type: Article
ID code: 35157
Keywords: cell hypoxia, chemoreceptor cells, delayed rectifier potassium channels, gene expression, ion channel gating, Kv1.1 Potassium Channel, Kv1.2 Potassium Channel, membrane potentials, neuropeptides, oxygen, PC12 Cells, patch-clamp techniques, Potassium channel blockers, pulmonary artery, transfection, Therapeutics. Pharmacology, Physiology, Cardiology and Cardiovascular Medicine
Subjects: Medicine > Therapeutics. Pharmacology
Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences
Depositing user: Pure Administrator
Date Deposited: 02 Nov 2011 10:43
Last modified: 10 Dec 2015 20:42

Actions (login required)

View Item View Item