Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Explicit discrete dispersion relations for the acoustic wave equation in d-dimensions using finite element, spectral element and optimally blended schemes

Ainsworth, Mark and Wajid, Hafiz Abdul (2010) Explicit discrete dispersion relations for the acoustic wave equation in d-dimensions using finite element, spectral element and optimally blended schemes. In: Computer Methods in Mathematics. Computer Methods in Mathematics: Advanced Structured Materials, 1 (1). Springer, pp. 3-17.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We study the dispersive properties of the acoustic wave equation for finite element, spectral element and optimally blended schemes using tensor product elements defined on rectangular grid in d-dimensions. We prove and give analytical expressions for the discrete dispersion relations for the above mentioned schemes. We find that for a rectangular grid (a) the analytical expressions for the discrete dispersion error in higher dimensions can be obtained using one dimensional discrete dispersion error expressions; (b) the optimum value of the blending parameter is p/(p + 1) for all p ∈ ℕ and for any number of spatial dimensions; (c) the optimal scheme guarantees two additional orders of accuracy compared with both finite and spectral element schemes; and (d) the absolute accuracy of the optimally blended scheme is and times better than that of the pure finite and spectral element schemes respectively.