Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Integrated self-assembling and holding technique applied to a 3-D MEMS variable optical attenuator

Li, L. and Zawadzka, Justyna and Uttamchandani, D.G. (2004) Integrated self-assembling and holding technique applied to a 3-D MEMS variable optical attenuator. Journal of Microelectromechanical Systems, 13 (1). pp. 83-90. ISSN 1057-7157

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The application of polysilicon/gold bimorph stress-induced curved beams for three-dimensional self-assembly of MEMS devices is reported. The mechanical principle behind this self-assembling procedure is presented and comparison with current assembling methods are made. With this self-assembling technique, no postprocessing is required. A free-space optical MEMS device in the form of a variable optical attenuator (VOA) has been fabricated and self-assembled using this technique. The angular elevation of the self-assembled structures and the attenuation characteristics of the optical MEMS device are reported. The VOA has a measured dynamic attenuation range of 44 dB at 1.55 /spl mu/m optical wavelength. The bending of the bimorph beams is also temperature controllable, and the thermal behavior of the beams is also reported.