Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Two-color continuous-variable quantum entanglement in a singly resonant optical parametric oscillator

Cuozzo, Domenico and Oppo, Gian-Luca (2011) Two-color continuous-variable quantum entanglement in a singly resonant optical parametric oscillator. Physical Review A, 84 (4). ISSN 1094-1622

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We apply the input-output theory of optical cavities to formulate a quantum treatment of a continuous-wave singly resonant optical parametric oscillator. This case is mainly relevant to highly nondegenerate signal and idler modes. We show that both intensity and quadrature squeezing are present and that the maximum noise reduction below the standard quantum limit is the same at the signal and idler frequencies as in the doubly resonant case. As the threshold of oscillation is approached, however, the intensity-difference and quadrature spectra display a progressive line narrowing which is absent in the balanced doubly resonant case. By use of the separability criterion for continuous variables, the signal-idler state is found to be entangled over wide ranges of the parameters. We show that attainable levels of squeezing and entanglement make singly resonant configurations ideal candidates for two-color quantum information processes, because of their ease of tuning in experimental realizations.