Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Glucagon activates two distinct signal transduction systems in hepatocytes, which leads to the desensitization of G-protein-regulated adenylate cyclase, the phosphorylation and inactivation of Gi-2 and the phosphorylation and stimulation of a specific cyclic AMP phosphodiesterase

Houslay, M.D. and Bushfield, M and Kilgour, E and Lavan, B E and Griffiths, S and Pyne, Nigel and Tang, I and Murphy, G (1990) Glucagon activates two distinct signal transduction systems in hepatocytes, which leads to the desensitization of G-protein-regulated adenylate cyclase, the phosphorylation and inactivation of Gi-2 and the phosphorylation and stimulation of a specific cyclic AMP phosphodiesterase. In: Activation and Desensitisation of Transducing Pathways. NATO ASI series, 44 . Springer-Verlag, pp. 63-83. ISBN 9783642836183

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Book chapter explains how glucagon activates two distinct signal transduction systems in hepatocytes, which leads to the desensitization of G-protein-regulated adenylate cyclase, the phosphorylation and inactivation of Gi-2 and the phosphorylation and stimulation of a specific cyclic AMP phosphodiesterase.