Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Towards a self-reporting coronary artery stent—Measuring neointimal growth associated with in-stent restenosis using electrical impedance techniques

Shedden, Laurie and Kennedy, Simon and Wadsworth, Roger and Connolly, Patricia (2010) Towards a self-reporting coronary artery stent—Measuring neointimal growth associated with in-stent restenosis using electrical impedance techniques. Biosensors and Bioelectronics, 26 (2). pp. 661-666. ISSN 0956-5663

Full text not available in this repository. (Request a copy from the Strathclyde author)


Implantable medical devices have become the standard method for treating a variety of cardiovascular diseases (NICE, 2003. 2009), such as coronary artery disease, where coronary artery stunts are the device of choice (Fischman et al., 1994; Babapulle et al., 2004). One post-operative problem with these devices is the long-term monitoring of the device-tissue interface, with respect to the complications that often arise from in-stent restenosis. This monitoring, where it is available, is currently performed using imaging techniques such as contrast angiography, IVUS, CT and MRI. In this study we propose an alternative method for the non-invasive monitoring of restenosis in coronary artery stents. This preliminary study uses impedance spectroscopy to measure the electrical impedance of cells and tissues associated with the neointimal growth that characterises in-stent restenosis in coronary artery stents. An in vitro organ culture model, using a stent implanted in a section of pig coronary artery, simulated tissue growth inside a stent. Impedance measurements were made regularly over a 28-day culture period. In a novel step, the stent itself was employed as an electrode. Differences in electrical impedance could be seen between control (stent alone) and artery-embedded stents in culture, which were associated with the presence of biological tissue. This method could potentially be developed to produce a stent that was capable of self-reporting in-stent restenosis. The advantages of such a device would be that monitoring could be non-invasively and easily carried out, allowing more routine follow-ups and the early identification and management of any device complications. (C) 2010 Elsevier B.V. All rights reserved.