Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Large pore diameter MCM-41 and its application for lead removal from aqueous media

Idris, Salah A. and Davidson, Christine M. and McManamon, Colm and Morris, Michael A. and Anderson, Peter and Gibson, Lorraine T. (2011) Large pore diameter MCM-41 and its application for lead removal from aqueous media. Journal of Hazardous Materials, 185 (2-3). pp. 898-904. ISSN 0304-3894

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A room temperature method to create large pore size and pore volume ordered mesoporous silica (MCM-41) is demonstrated. Template removal was achieved with a microwave digestion procedure using a solution of nitric acid and hydrogen peroxide. The silica product exhibited an ordered hexagonal mesostructure, large pore volume (up to 0.99 cm(3)/g), and large pore size (up to 6.74 nm) indicating its potential as a high capacity adsorbent. Surface modification, to enhance the ability of the material to extract potentially toxic metals (PTMs) from water was performed using different amino- and mercapto-functional groups. This paper reports on the extraction of lead ions from aqueous solution to demonstrate the material's significant improvement in adsorption capacity (up to 1000 mu mol g(-1) for lead). Moreover, methods have been developed to regenerate the sorbent allowing 100% recovery of Pb and reuse of the sorbent material in subsequent extractions. The performance of the material was also demonstrated for environmental samples containing relatively high concentrations (ppmv) of mixed metal ions reducing them to lower values (<100 ppbv) indicating that the sorbent may have applicability for environmental remediation of polluted water. (C) 2010 Elsevier B.V. All rights reserved.