Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Proteolysis of cyclic AMP phosphodiesterase-II attenuates its ability to be inhibited by compounds which exert positive inotropic actions in cardiac tissue

Price, B and Pyne, N J and Houslay, M D (1987) Proteolysis of cyclic AMP phosphodiesterase-II attenuates its ability to be inhibited by compounds which exert positive inotropic actions in cardiac tissue. Biochemical Pharmacology, 36 (23). pp. 4047-54. ISSN 0006-2952

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Extraction of frozen canine cardiac muscle rendered soluble over 90% of the cyclic AMP phosphodiesterase activity. The residual activity was membrane-bound. Ion exchange chromatography of the soluble activity on DE-52 allowed for the resolution of three distinct cyclic AMP phosphodiesterase fractions termed PDE-I, PDE-II and PDE-III in order of elution from the column by a linear NaCl gradient. The relative ratio of cyclic AMP phosphodiesterase activity exhibited by these three peaks was 1:0.65:0.82 and of cyclic GMP phosphodiesterase activity was 1:0.52:0.05 for PDE-I, PDE-II and PDE-III respectively. PDE-II and PDE-III were further purified by re-chromatography on DE-52. Fractions PDE-II and PDE-III were thermolabile at 50 degrees, decaying as single exponentials with half lives of 180 sec and 77 sec respectively. All three species exhibited non-linear Lineweaver-Burke plots for the hydrolysis of cyclic AMP, exhibiting both high and low affinity components. Hydrolysis of cyclic GMP by all three components obeyed normal kinetics, yielding linear plots. PDE-I was a Ca2+/calmodulin-activated species which exhibited a low Km for both cyclic AMP and cyclic GMP but hydrolysed cyclic GMP with a higher Vmax than for cyclic AMP. PDE-II exhibited a much lower Km for cyclic AMP than for cyclic GMP and a much higher Vmax for the hydrolysis of cyclic AMP. PDE-III exhibited a low Km for both cyclic AMP and cyclic GMP, however, its Vmax for cyclic AMP was about 40-fold higher than for cyclic GMP. Cyclic GMP acted as a potent inhibitor (IC50 = 6.3 microM) of cyclic AMP hydrolysis catalysed by PDE-III but not of the hydrolysis of cyclic AMP by PDE-II (IC50 = 33.2 microM). The phosphodiesterase inhibitors milrinone, CI-930, UK-35,493, carbazeran and buquineran acted as potent inhibitors of cyclic AMP hydrolysis catalysed by both PDE-II and PDE-III enzymes. They did not inhibit PDE-I activity. PDE-II, when prepared in the absence of protease inhibitors exhibited a reduced potency to inhibition by these compounds. Treatment of purified PDE-II with trypsin caused a reduction in enzyme activity and reduced dramatically the sensitivity of PDE-II activity to inhibition by these various compounds. The action of proteolysis in attenuating the inhibitory effect of these compounds on PDE-II was most dramatic with CI-930, milrinone, amrinone, buquineran and UK35,493 and least dramatic with carbazeran and IBMX.