Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

c-Src is involved in regulating signal transmission from PDGFbeta receptor-GPCR(s) complexes in mammalian cells

Waters, Catherine M and Connell, Michelle C and Pyne, Susan and Pyne, Nigel J (2005) c-Src is involved in regulating signal transmission from PDGFbeta receptor-GPCR(s) complexes in mammalian cells. Cellular Signalling, 17 (2). pp. 263-277. ISSN 0898-6568

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We have reported that the platelet-derived growth factor receptor-beta (PDGFbeta) forms a novel signaling complex with G protein-coupled receptors (GPCR) (e.g. S1P(1) receptor) that enables more efficient activation of p42/p44 mitogen-activated protein kinase (MAPK) in response to PDGF and sphingosine 1-phosphate (S1P). We now demonstrate that c-Src participates in regulating the endocytosis of PDGFbeta receptor-GPCR complexes in response to PDGF. This leads to association of cytoplasmic p42/p44 MAPK with the receptor complex in endocytic vesicles. c-Src is regulated by G protein betagamma subunits and can interact with beta-arrestin. Indeed, the PDGF-dependent activation of p42/p44 MAPK was reduced by over-expression of the C-terminal domain of GRK2 (sequesters Gbetagamma subunits), the clathrin-binding domain of beta-arrestin and by inhibitors of c-Src and clathrin-mediated endocytosis. Moreover, PDGF and S1P induce the recruitment of c-Src to the PDGFbeta receptor-S1P(1) receptor complex. This leads to a G protein/c-Src-dependent tyrosine phosphorylation of Gab1 and accumulation of dynamin II at the plasma membrane, a step required for endocytosis of the PDGFbeta receptor-GPCR complex. These findings provide important information concerning the molecular organisation of novel receptor tyrosine kinase (RTK)-GPCR signal relays in mammalian cells.