Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Experimental systems for studying the role of G-protein-coupled receptors in receptor tyrosine kinase signal transduction

Pyne, Nigel J and Waters, Catherine and Moughal, Noreen Akhtar and Sambi, Balwinder and Connell, Michelle and Pyne, Susan (2004) Experimental systems for studying the role of G-protein-coupled receptors in receptor tyrosine kinase signal transduction. Methods in Enzmology, 390. pp. 451-475. ISSN 0076-6879

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Early conception of G-protein-coupled receptor (GPCR) and receptor tyrosine kinase (RTK) signaling pathways was that each represented distinct and linear modules that converged on downstream targets, such as p42/p44 mitogen-activated protein kinase (MAPK). It has now become clear that this is not the case and that multiple levels of cross-talk exist between both receptor systems at early points during signaling events. In recent years, it has become apparent that transactivation of receptor tyrosine kinases by GPCR agonists is a general phenomenon that has been demonstrated for many unrelated GPCRs and receptor tyrosine kinases. In this case, GPCR/G-protein participation is upstream of the receptor tyrosine kinase. However, evidence now demonstrates that numerous growth factors use G proteins and associated signaling molecules such as beta-arrestins that participate downstream of the receptor tyrosine kinase to signal to effectors, such as p42/p44 MAPK. This article highlights experimental approaches used to investigate this novel mechanism of cross-talk between receptor tyrosine kinases and GPCRs.